Skip to main content
Log in

Effect of modified graphite nanoflakes on curing, mechanical and dielectric properties of nitrile rubber nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Graphite is a naturally abundant material and thus cost effective as a raw material. The layered structure of natural graphite like silicate clay materials, allows expansion and intercalation. Graphite was expanded by heating (i.e., at 900 °C), yielding expanded graphite (EG). EG was modified with tween 80 surfactant (50 wt%) obtaining modified expanded graphite (MEG). EG and MEG fillers were separately melt mixed at different loadings (i.e., 2.0, 4.0, 6.0, 8.0 and 10.0 phr) with nitrile rubber (NBR) as a matrix. The influence of the prepared EG, MEG loading on curing, mechanical and electrical properties of NBR nanocomposites were investigated. TEM revealed the surfactant intercalation within EG layers. SEM showed a good dispersion of MEG (6 phr) in NBR matrix in comparison to EG with medium dispersion at the same loading. Heterogeneous dispersion of MEG (8 phr) was observed as filler agglomerations in the matrix. Curing characterizations reflected a faster cure rate with an increase in maximum and minimum torques and torques difference for compound with MEG (6 phr) in comparison to that with EG at the same content and unfilled NBR compound. Mechanical properties indicated nanocomposites reinforcement with 6 phr MEG supporting the curing characterizations. While Shore A hardness values were increased with filler content up to 10 phr. NBR nanocomposites filled with MEG exhibited higher values of permittivity έ, dielectric loss \(\mathop \varepsilon \limits^{{\prime \prime }}\) and dc conductivity σ than those filled with EG. A slight increase in the dc conductivity was found with increasing filler content up to 6 phr. Beyond 6 phr (i.e., up to 10 phr) a sudden increase in the conductivity of the system was observed and its value in the order of 10–10 Ω−1 cm−1 reflected a promising application of these nanocomposites as antistatic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sadek E, El-Nashar D, Ward A, Ahmed S (2018) Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites. J Polym Res 25:1–13. https://doi.org/10.1007/s10965-018-1641-0

    Article  CAS  Google Scholar 

  2. Sadek E, El-nashar D, Ahmed S (2018) Influence of modifying agents of organoclay on the properties of nanocomposites based on acrylonitrile butadiene rubber. Egypt J Pet 27:1177–1185. https://doi.org/10.1016/j.ejpe.2018.04.007

    Article  Google Scholar 

  3. Prasanna SRVS, Balaji K, Pandey S, Rana S (2019) Metal oxide based nanomaterials and their polymer nanocomposites. Nanomater Polym Nanocompos. https://doi.org/10.1016/B978-0-12-814615-6.00004-7

    Article  Google Scholar 

  4. Rane V, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. Synth Inorg Nanomater. https://doi.org/10.1016/B978-0-08-101975-7.00005-1

    Article  Google Scholar 

  5. Jojibabu P, Zhang Y, Rider AN, Wang J, Wuhrer R, Prusty BG (2020) High-performance epoxy-based adhesives modified with functionalized graphene nanoplatelets and triblock copolymers. Int J Adhes Adhes 98:102521–102532. https://doi.org/10.1016/j.ijadhadh.2019.102521

    Article  CAS  Google Scholar 

  6. Wang L, Zhang L, Tian M (2012) Effect of expanded graphite (EG) dispersion on the mechanical and tribological properties of nitrile rubber/EG composites. Wear 276–277:85–93. https://doi.org/10.1016/j.wear.2011.12.009

    Article  CAS  Google Scholar 

  7. Zhong B, Luo Y, Chen LY, Hu D, Dong H, Jia Z, Jia D (2019) Immobilization of rubber additive on graphene for high-performance rubber composites. J Colloid Interface Sci 550:190–198. https://doi.org/10.1016/j.jcis.2019.05.006

    Article  CAS  Google Scholar 

  8. Mondal T, Bhowmick A, Ghosal R, Mukhopadhyay R (2018) Expanded graphite as an agent towards controlling the dispersion of carbon black in poly (styrene-co-butadiene) matrix: an effective strategy towards the development of high-performance multifunctional composite. Polymer 146:31–41. https://doi.org/10.1016/j.polymer.2018.05.031

    Article  CAS  Google Scholar 

  9. Guezzout Z, Doufnoune R, Haddaou N (2017) Effect of graphene oxide on the properties of compatibilized polypropylene/ethylene-propylene-rubber blend. J Polym Res 24:129–134. https://doi.org/10.1007/s10965-017-1291-7

    Article  CAS  Google Scholar 

  10. Mensah B, Gupta K, Kim H, Wang W, Jeong K, Nah C (2018) Graphene-reinforced elastomeric nanocomposites: a review. Polym Test J 68:160–184. https://doi.org/10.1016/j.polymertesting.2018.04.009

    Article  CAS  Google Scholar 

  11. Chavan S, Gumtapure V, Perumal D (2020) Numerical and experimental analysis on thermal energy storage of polyethylene/functionalized graphene composite phase change materials. J Energy Storage 27:101045–101055. https://doi.org/10.1016/j.est.2019.101045

    Article  Google Scholar 

  12. Mostovoy A, Yakovlev A (2019) Reinforcement of epoxy composites with graphite graphene structures. Sci Rep 9:16246–16254. https://doi.org/10.1038/s41598-019-52751-z

    Article  CAS  Google Scholar 

  13. Alshammari B, Al-Mubaddel F, Karim M, Hossain M, Al-Mutairi A, Wilkinson A (2019) Addition of graphite filler to enhance electrical, morphological, thermal, and mechanical properties in poly (ethylene terephthalate): experimental characterization and material modeling. Polymers 11:1411–1430. https://doi.org/10.3390/polym11091411

    Article  CAS  Google Scholar 

  14. Rzeczkowski P, Krause B, Pötschke P (2019) Characterization of highly filled PP/graphite composites for adhesive joining in fuel cell applications. Polymers 11:462–476. https://doi.org/10.3390/polym11030462

    Article  CAS  Google Scholar 

  15. Bokobza L (2017) Mechanical and electrical properties of elastomer nanocomposites based on different carbon nanomaterials. J Carbon Res 3(10):1–22. https://doi.org/10.3390/c3020010

    Article  CAS  Google Scholar 

  16. Gu W, Zhang W, Li X, Zhu H, Wei J, Li Z, Shu Q, Wang C, Wang K, Shen W, Kang F, Wu D (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19:3367–3369. https://doi.org/10.1039/b904093p

    Article  CAS  Google Scholar 

  17. Nair A, Kurian P, Joseph R (2013) Effect of expanded graphite on thermal, mechanical and dielectric properties of ethylene–propylene–diene terpolymer/hexa fluoropropylene–vinylidinefluoride dipolymer rubber blends. Eur Polym J 49:247–260. https://doi.org/10.1016/j.eurpolymj.2012.08.014

    Article  CAS  Google Scholar 

  18. Malas A, Das C (2017) Influence of modified graphite flakes on the physical, thermomechanical and barrier properties of butyl rubber. J Alloy Compd 699:38–46. https://doi.org/10.1016/j.jallcom.2016.12.232

    Article  CAS  Google Scholar 

  19. Zirnstein B, Tabaka W, Frasca D, Schulze D, Schartel B (2018) Graphene / hydrogenated acrylonitrile-butadiene rubber nanocomposites: Dispersion, curing, mechanical reinforcement, multifunctional filler. PolymTest J 66:268–279. https://doi.org/10.1016/j.polymertesting.2018.01.035

    Article  CAS  Google Scholar 

  20. Xue X, Yin Q, Jia H, Zhang X, Wena Y, Ji Q, Xu Z (2017) Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees. Appl Surf Sci 423:584–591. https://doi.org/10.1016/j.apsusc.2017.06.200

    Article  CAS  Google Scholar 

  21. Thomas B, Maria H, George G, Thomas S, Unnikrishnan N, Joseph K (2019) A novel green approach for the preparation of high performance nitrile butadiene rubber-pristine graphene nanocomposites. Compos B 175:107174–107181. https://doi.org/10.1016/j.compositesb.2019.107174

    Article  CAS  Google Scholar 

  22. Liu Z, Qian Z, Song J, Zhang Y (2019) Conducting and stretchable composites using sandwiched graphene carbon nanotube hybrids and styrene-butadiene rubber. Carbon 149:181–189. https://doi.org/10.1016/j.carbon.2019.04.037

    Article  CAS  Google Scholar 

  23. Zheng L, Wang D, Xu Z, Zhang L, Liu L, Wen S (2019) High barrier properties against sulfur mustard of graphene oxide/butyl rubber composites. Compos Sci Technol 170:141–147. https://doi.org/10.1016/j.compscitech.2018.12.002

    Article  CAS  Google Scholar 

  24. Wang G, Liao X, Yang J, Tang W, Zhang Y, Jiang Q, Li G (2019) Frequency-selective and tunable electromagnetic shielding effectiveness via the sandwich structure of silicone rubber/graphene composite. Compos Sci Technol 184:107847–107855. https://doi.org/10.1016/j.compscitech.2019.107847

    Article  CAS  Google Scholar 

  25. Hu H, Gao Q, Tian G, Hong S, Zhao J, Zhao Y (2018) The influence of topology and morphology of fillers on the conductivity and mechanical properties of rubber composites. J Polym Res 25:87–96. https://doi.org/10.1007/s10965-018-1478-6

    Article  CAS  Google Scholar 

  26. Ravikumar K, Palanivelu K, Ravichandran K (2019) Dielectric properties of natural rubber composites filled with graphite. Mater Today Proc 16:1338–1343. https://doi.org/10.1016/j.matpr.2019.05.233

    Article  CAS  Google Scholar 

  27. Maya M, George S, Jose T, Kailas L, Thomas S (2018) Development of a flexible and conductive elastomeric composite based on chloroprene rubber. Polym Test J 65:256–263. https://doi.org/10.1016/j.polymertesting.2017.12.006

    Article  CAS  Google Scholar 

  28. Liang A, Jiang X, Hong X, Jiang Y, Shao Z, Zhu D (2018) Recent developments concerning the dispersion methods and mechanisms of graphene. Coatings. https://doi.org/10.3390/coatings8010033

    Article  Google Scholar 

  29. Smith R, Lotya M, Coleman J (2010) The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New J Phys 12:125008–125018. https://doi.org/10.1088/1367-2630/12/12/125008

    Article  CAS  Google Scholar 

  30. Promchim J, Kanking S, Niltui P, Wimolmala E, Sombatsompop N (2016) Swelling and mechanical properties of (acrylonitrile-butadiene rubber)/ (hydrogenated acrylonitrile-butadiene rubber) blends with precipitated silica filled in gasohol fuels. J Vinyl Addit Technol 22:239–246. https://doi.org/10.1002/vnl.21417

    Article  CAS  Google Scholar 

  31. Burelo M, Martínez A, Cruz-Morales JA, Tlenkopatchev MA, Gutiérrez S (2019) Metathesis reaction from bio-based resources: synthesis of diols and macrodiols using fatty alcohols, β-citronellol and natural rubber. Polym Degrad Stab 166:202–212. https://doi.org/10.1016/j.polymdegradstab.2019.05.021

    Article  CAS  Google Scholar 

  32. Martínez A, Tlenkopatchev MA, Gutiérrez S, Burelo M, Vargas J, Jiménez-Regalado E (2019) Synthesis of unsaturated esters by cross-metathesis of terpenes and natural rubber using Ru-alkylidene catalysts. Curr Org Chem 23(12):1354–1362. https://doi.org/10.2174/1385272823666190723125427

    Article  CAS  Google Scholar 

  33. Robert A (1990) Natural rubber science and technology. Oxford Sci Publ. https://doi.org/10.1002/pi.4980210421

    Article  Google Scholar 

  34. Sadek E, El-Nashar D, Ahmed S (2015) Effect of organoclay reinforcement on the curing characteristics and technological properties of styrene–butadiene rubber. Polym Compos 36(7):1293–1302. https://doi.org/10.1002/pc.23034

    Article  CAS  Google Scholar 

  35. Liu D, Du X, Meng Y (2005) Preparation of NBR/expanded graphite nanocomposites by simple mixing. Polym Polym Compos 13(8):815–821. https://doi.org/10.1177/2F096739110501300807

    Article  CAS  Google Scholar 

  36. Reffaee A, El-Nashar D, Abd-El-Messieh S, Abd-El Nour K (2009) Electrical and mechanical properties of acrylonitrile rubber and linear low density polyethylene composites in the vicinity of the percolation threshold. Mater Des 30:3760–3769. https://doi.org/10.1016/j.matdes.2009.02.001

    Article  CAS  Google Scholar 

  37. Pang H, Xu L, Yan D, Li Z (2014) Conductive polymer composites with segregated Structures. Prog Polym Sci 39:1908–1933. https://doi.org/10.1016/j.progpolymsci.2014.07.007

    Article  CAS  Google Scholar 

  38. Mutlay I, Tudoran L (2014) Percolation behavior of electrically conductive graphene nanoplatelets/polymer 11 nanocomposites: theory and experiment. Fullerenes, Nanotubes, Carbon Nanostruct 22:413–433. https://doi.org/10.1080/1536383X.2012.684186

    Article  CAS  Google Scholar 

  39. Wang P, Chong H, Zhang J, Yang Y, Lu H (2018) Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite. Compos Sci Technol 158:147–155. https://doi.org/10.1016/j.compscitech.2018.01.022

    Article  CAS  Google Scholar 

  40. Jan-Chan H (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313. https://doi.org/10.1002/adv.10025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Sadek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadek, E.M., Ahmed, S.M., El-Nashar, D.E. et al. Effect of modified graphite nanoflakes on curing, mechanical and dielectric properties of nitrile rubber nanocomposites. Polym. Bull. 80, 847–863 (2023). https://doi.org/10.1007/s00289-021-03916-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03916-2

Keywords

Navigation