Skip to main content
Log in

Microfluidic preparation of magnetic chitosan microsphere and its adsorption towards Congo red

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Facile separation from feed liquid is practically important for application of adsorbents, especially for powdery adsorbents. To this challenge, a co-flow microfluidic device was set up in this work to prepare a magnetic chitosan microsphere without using any surfactant or cross-linking agent. In the microfluidic preparation, a chitosan solution containing Fe2+ and Fe3+ was cut by the shear force of the flow of the continuous phase of isopentanol to form monodispersed droplets, which were introduced into an ammonia aqueous solution bath to obtain the magnetic microspheres. The microstructure of the magnetic chitosan microsphere was carefully characterized, and was compared with that of the neat chitosan microsphere. Our results indicate that the co-precipitated Fe2+ and Fe3+ form in situ magnetite Fe3O4 nanoparticles of 4.6 ± 1.7 nm in the matrix of chitosan, endowing the magnetic chitosan microsphere with superparamagnetic property and with 41.3 emu/g saturation magnetization. In addition, the magnetic chitosan microsphere displays only slight decrease in equilibrium adsorption capacity towards Congo red, but reveals much faster adsorption, when compared with the neat chitosan microsphere. We attribute those to the walnut-like wrinkle surface and high zeta potential of the magnetic chitosan microsphere. Therefore, our work provides a method of preparing even-sized magnetic chitosan microsphere, which can adsorb anionic dye quickly and can be facilely removed from liquid phase after adsorption, implying an excellent adsorbent candidate with great potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Tran VV, Park D, Lee YC (2018) Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ Sci Pollut R 25:24569–24599

    Article  Google Scholar 

  2. Ajith MP, Aswathi M, Priyadarshini E, Rajamani P (2021) Recent innovations of nanotechnology in water treatment: A comprehensive review. Bioresource Technol 342:126000

    Article  CAS  Google Scholar 

  3. Sharma A, Mangla D, Shehnaz CSA (2022) Recent advances in magnetic composites as adsorbents for wastewater remediation. J Environ Manage 306:114483

    Article  CAS  PubMed  Google Scholar 

  4. De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain Mater Techno 9:10–40

    Google Scholar 

  5. Tamjidi S, Esmaeili H, Moghadas BK (2019) Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Mater Res Express 6:102004

    Article  CAS  Google Scholar 

  6. Wang MX, You XY (2021) Critical review of magnetic polysaccharide-based adsorbents for water treatment: Synthesis, application and regeneration. J Clean Prod 323:129118

    Article  CAS  Google Scholar 

  7. Ayub A, Raza ZA (2021) Arsenic removal approaches: A focus on chitosan biosorption to conserve the water sources. Int J Biol Macromol 192:1196–1216

    Article  CAS  PubMed  Google Scholar 

  8. Zhao SH, Bai ZS, Wang BJ, Tian T, Hu ZQ (2020) Innovative benign-to-design functionalized adsorbents from biomass for rapid azo-dyes separation. Sep Purif Technol 241:116633

    Article  CAS  Google Scholar 

  9. Hernandez-Varela JD, Villasenor-Altamirano SL, Chanona-Perez JJ, Victoriano LG, Flores MDP, Sodi FC, Benavides HAC, Aucar PM (2022) Effect of cellulose nanoparticles from garlic waste on the structural, mechanical, thermal, and dye removal properties of chitosan/alginate aerogels. J Polym Res 29:133

    Article  CAS  Google Scholar 

  10. Yu XL, Huang XJ, Bai CZ, Xiong XP (2019) Modification of microcrystalline cellulose with acrylamide under microwave irradiation and its application as flocculant. Environ Sci Pollut R 26:32859–32865

    Article  CAS  Google Scholar 

  11. Duan JJ, Wang Y, Wang YD, Xiong XP (2012) Preparation and characterization of cellulose-coated chitosan beads with improved strength and acid resistivity. J Appl Polym Sci 126:E173–E179

    Article  CAS  Google Scholar 

  12. Xu YH, Shen CH, Gao SJ (2015) Preparation and characterization of chitosan gel beads crosslinked by organic titanium. J Polym Res 22:53

    Article  Google Scholar 

  13. Chen JW, Shang JQ, Xue F, Wei QS, Xu N, Ding EY (2019) Preparation and characterization of h-BN nanosheets/chitosan microspheres. J Polym Res 26:264

    Article  CAS  Google Scholar 

  14. Wang WB, Kang YR, Wang AQ (2013) One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res 20:101

    Article  Google Scholar 

  15. Patel SR, Patel MP (2022) Selective capture of anionic and cationic dyes via chitosan-g-poly-(IA-co-DADMAC)/Fe3O4 polymer composite hydrogel. Polym Bull. https://doi.org/10.1007/s00289-021-04017-w

    Article  Google Scholar 

  16. Xiong XP, Duan JJ, Zou WW, He XM, Zheng W (2010) A pH-sensitive regenerated cellulose membrane. J Membrane Sci 363:96–102

    Article  CAS  Google Scholar 

  17. Dakroury GA, Ali SM, Hassan HS (2021) Assessment of adsorption performance of chitosan/ZrO2 biosorbent composite towards Cs (I) and Co (II) metal ions from aqueous solution. J Polym Res 28:385

    Article  CAS  Google Scholar 

  18. Al-Harby NF, Albahly EF, Mohamed NA (2022) Synthesis and characterization of novel uracil-modified chitosan as a promising adsorbent for efficient removal of Congo red dye. Polymers 14:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zou WW, Geng H, Lin MF, Xiong XP (2012) Facile one-pot preparation of superparamagnetic chitosan sphere and its derived hollow sphere. J Appl Polym Sci 123:3587–3594

    Article  CAS  Google Scholar 

  20. Geng YK, Jing Y, Wang SH, Qian H (2020) Synthesis of chitosan composite microspheres and their application for the removal of stickies in the recycled paper. J Polym Res 27:97

    Article  CAS  Google Scholar 

  21. Tong XF, Zhang JJ, Chen QB, Liu HL (2021) Zeolitic imidazolate framework-8/graphene oxide/magnetic chitosan nanocomposites for efficient removal of Congo red from aqueous solution. New J Chem 45:19416–19424

    Article  CAS  Google Scholar 

  22. Xu J, Zeng GY, Lin QQ, Gu Y, Wang XL, Feng ZH, Sengupta A (2022) Application of 3D magnetic nanocomposites: MXene-supported Fe3O4@CS nanospheres for highly efficient adsorption and separation of dyes. Sci Total Environ 822:153544

    Article  CAS  PubMed  Google Scholar 

  23. Simonescu CM, Tatarus A, Culita DC, Stanica N, Ionescu IA, Butoi B, Banici AM (2021) Comparative study of CoFe2O4 nanoparticles and CoFe2O4-Chitosan composite for Congo red and methyl orange removal by adsorption. Nanomaterials 11:711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jawad AH, Abdulhameed AS, Selvasembian R, ALOthman ZA, Wilson LD (2022) Magnetic biohybrid chitosan-ethylene glycol diglycidyl ether/magnesium oxide/Fe3O4 nanocomposite for textile dye removal: Box-Behnken design optimization and mechanism study. J Polym Res 29:207

    Article  CAS  Google Scholar 

  25. Giakisikli G, Anthemidis AN (2013) Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review Anal Chim Acta 789:1–16

    Article  CAS  PubMed  Google Scholar 

  26. Wang BJ, Zhu Y, Bai ZS, Luque R, Xuan J (2017) Functionalized chitosan biosorbents with ultra-high performance, mechanical strength and tunable selectivity for heavy metals in wastewater treatment. Chem Eng J 325:350–359

    Article  CAS  Google Scholar 

  27. Wang BJ, Bai ZS, Jiang HR, Prinsen P, Luque R, Zhao SL, Xuan J (2019) Selective heavy metal removal and water purification by microfluidically-generated chitosan microspheres: Characteristics, modeling and application. J Hazard Mater 364:192–205

    Article  CAS  PubMed  Google Scholar 

  28. Yang L, Cong YH, Zhang JY, Gu ZY, Shen LL, Gao HL, Zheng XY, Wang M, He JC (2022) Efficient fabrication of uniform, injectable, and shape-memory chitosan microsponges as cell carriers for tissue engineering. ACS Appl Polym Mater 4:1743–1751

    Article  CAS  Google Scholar 

  29. Huang YC, Han TT, Xuan J, Xu H, Wang YL, Zhang L (2018) Design criteria and applications of multi-channel parallel microfluidic module. J Micromech Microeng 28:105021

    Article  Google Scholar 

  30. Elvira KS, Gielen F, Tsai SSH, Nightingale AM (2022) Materials and methods for droplet microfluidic device fabrication. Lab Chip 22:859–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu R, Wu Q, Huang X, Zhao XX, Chen XH, Chen YG, Weitz DA, Song YJ (2021) Synthesis of nanomedicine hydrogel microcapsules by droplet microfluidic process and their pH and temperature dependent release. RSC Adv 11:37814–37823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He TX, Wang WB, Chen BS, Wang J, Liang QL, Chen BS (2020) 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohyd Polym 236:116094

    Article  CAS  Google Scholar 

  33. Mu XT, Li Y, Ju XJ, Yang XL, Xie R, Wang W, Liu Z, Chu LY (2020) Microfluidic fabrication of structure-controlled chitosan microcapsules via interfacial cross-linking of droplet templates. ACS Appl Mater Inter 12:57514–57525

    Article  CAS  Google Scholar 

  34. Nemati Y, Zahedi P, Baghdadi M, Ramezani S (2019) Microfluidics combined with ionic gelation method for production of nanoparticles based on thiol-functionalized chitosan to adsorb Hg (II) from aqueous solutions. J Environ Manage 238:166–177

    Article  CAS  PubMed  Google Scholar 

  35. Ding BJ, Wang J, Tao SY, Ding YZ, Zhang LJ, Gao N, Li GT, Shi HN, Li WJ, Ge S (2018) Fabrication of multi-functional porous microspheres in a modular fashion for the detection, adsorption, and removal of pollutants in wastewater. J Colloid Interf Sci 522:1–9

    Article  CAS  Google Scholar 

  36. Zhang BL, Yu HY, Wang JQ, Chen X, Zhang HP, Zhang QY (2018) Fe3O4@SiO2@CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase. J Alloy Compd 735:1986–1996

    Article  CAS  Google Scholar 

  37. Lei LJ, Wang XG, Zhu YL, Su WT, Lv QZ, Li D (2022) Antimicrobial hydrogel microspheres for protein capture and wound healing. Mater Design 215:110478

    Article  CAS  Google Scholar 

  38. Huang J, Wu DP, Xiong XP (2022) Preparation of a composite hydrogel of polyvinyl alcohol/chitosan fiber with anisotropic properties for sustained drug release. J Appl Polym Sci 139:e53199

    Article  CAS  Google Scholar 

  39. Wypych G (2001) Handbook of solvents. chemTec Publishing, Toronto. (2003) (trans: Fan YH, Wang GY, Deng CS et al). China Petrochemical Press, Beijing

  40. Ding Y, Hu Y, Jiang XQ, Zhang LY, Yang CZ (2004) Polymer-monomer pairs as a reaction system for the synthesis of magnetic Fe3O4-polymer hybrid hollow nanospheres. Angew Chem Int Ed 43:6369–6372

    Article  CAS  Google Scholar 

  41. Mu B, Liu P, Dong Y, Lu CY, Wu XL (2010) Superparamagnetic pH-sensitive multi layer hybrid hollow microspheres for targeted controlled release. J Polym Sci Part A Polym Chem 48:3135–3144

    Article  CAS  Google Scholar 

  42. Xie HT, Xiong XP (2017) A porous MoS2-rGO composite with high adsorption capacity for fast and preferential adsorption towards Congo red. J Environ Chem Eng 5:1150–1158

    Article  CAS  Google Scholar 

  43. Mok CF, Ching YC, Abu Osman NA, Muhamad F, Hai ND, Choo JH, Hassan CR (2020) Adsorbents for removal of cationic dye: nanocellulose reinforced biopolymer composites. J Polym Res 27:373

    Article  CAS  Google Scholar 

  44. Chen W, Liu ZJ, Tang Q, Du B, Huang XB, Mo Y, Fan LQ, Luo HB, Chen FH (2021) Assessment of a novel aminated magnetic adsorbent with excellent adsorption capacity for dyes and drugs. J Environ Manage 293:112809

    Article  CAS  PubMed  Google Scholar 

  45. Guo X, Huang DJ, Bai WX, Zhao H, Ouyang CW, Qiang XH, Feng LB (2022) A novel strategy to prepare chitosan/magnesite composite aerogel adsorbent: Magnesite as neutralizer and filler. Mater Lett 313:131803

    Article  CAS  Google Scholar 

  46. Al-Harby NF, Albahly EF, Mohamed NA (2021) Kinetics, isotherm and thermodynamic studies for efficient adsorption of Congo red dye from aqueous solution onto novel cyanoguanidine-modified chitosan adsorbent. Polymers 13:4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tan YM, Kang YT, Wang WW, Lv XY, Wang BR, Zhang Q, Cui CY, Cui SY, Jiao SH, Pang GS, Feng SH (2021) Chitosan modified inorganic nanowires membranes for ultra-fast and efficient removal of Congo red. Appl Surf Sci 569:150970

    Article  CAS  Google Scholar 

  48. Srivastava V, Choubey AK (2021) Investigation of adsorption of organic dyes present in wastewater using chitosan beads immobilized with biofabricated CuO nanoparticles. J Mol Struct 1242:130749

    Article  CAS  Google Scholar 

  49. Ramezani S, Zahedi P, Bahrami SH, Nemati Y (2019) Microfluidic Fabrication of Nanoparticles Based on Ethyl Acrylate-Functionalized Chitosan for Adsorption of Methylene Blue from Aqueous Solutions. J Polym Environ 27:1653–1665

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial supports from the Science and Technology Major Program of Fujian Province of China (No. 2022H6001) and the Key Project of Science & Technology for China Tobacco Fujian Industrial Co., LTD (FJZYKJJH2022ZD002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Liu or Xiaopeng Xiong.

Ethics declarations

Conflicts of interests/Competing interests

The authors declare that they have no known conflicts of interests or competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, D., Bai, X. et al. Microfluidic preparation of magnetic chitosan microsphere and its adsorption towards Congo red. J Polym Res 30, 77 (2023). https://doi.org/10.1007/s10965-022-03387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03387-7

Keywords

Navigation