Skip to main content
Log in

Effect of cellulose nanoparticles from garlic waste on the structural, mechanical, thermal, and dye removal properties of chitosan/alginate aerogels

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Aerogels with cellulose nanoparticles (CNP) from garlic waste in a chitosan/alginate matrix via a freezing process were prepared. Physicochemical, structural, thermal, and mechanical characterization were performed in aerogels revealing an enhancement in the water solubility, degree of swelling, mechanical and thermal properties, and dye removal when CNP were added. Scanning electron and confocal microscopy images showed an organized structure in a multilayer shape when CNP were added compared to aerogel without CNP. Since CNP act as a filler and mechanical reinforcement for the aerogel, improvements in their polymer matrix were evidenced using spectroscopy (FTIR, XPS, and XRD) and microscopic techniques, as well as their thermal and mechanical properties, degree of swelling, and dye removal capacity of methylene blue (MB). Aerogels with CNP provided better removal of MB (62%) in contrast with aerogels without CNP (45%), providing a material with better capacity to remove dye in water. The novelty of this work was revealing the role of the CNP addition into the aerogels’ structure using electron and confocal microscopy by detailed image analysis and staining selective with conventional fluorochromes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121. https://doi.org/10.1007/s10570-018-2189-1

    Article  CAS  Google Scholar 

  2. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: A review of recent advances. Ind Crops Prod 93:2–25. https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  CAS  Google Scholar 

  3. Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew Sustain Energy Rev 34:273–299. https://doi.org/10.1016/j.rser.2014.03.017

    Article  CAS  Google Scholar 

  4. Sampath UGTM, Ching YC, Chuah CH et al (2017) Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24:2215–2228. https://doi.org/10.1007/s10570-017-1251-8

    Article  CAS  Google Scholar 

  5. Nascimento DM, Nunes YL, Figueirêdo MCB et al (2018) Nanocellulose nanocomposite hydrogels: Technological and environmental issues. Green Chem 20:2428–2448. https://doi.org/10.1039/c8gc00205c

    Article  CAS  Google Scholar 

  6. Du H, Shi S, Liu W et al (2020) Processing and modification of hydrogel and its application in emerging contaminant adsorption and in catalyst immobilization: a review. Environ Sci Pollut Res 27:12967–12994. https://doi.org/10.1007/s11356-020-08096-6

    Article  CAS  Google Scholar 

  7. Genevro GM, de Moraes MA, Beppu MM (2019) Freezing influence on physical properties of glucomannan hydrogels. Int J Biol Macromol 128:401–405. https://doi.org/10.1016/j.ijbiomac.2019.01.112

    Article  CAS  PubMed  Google Scholar 

  8. Wan C, Lu Y, Jiao Y et al (2015) Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels. Carbohydr Polym 118:115–118. https://doi.org/10.1016/j.carbpol.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  9. Piotr K, Jeszka JK, Artur M, Leszek S (2020) Regenerated Cellulose/Graphene Composite Fibers with Electroconductive Properties. Autex Res J 0:1–7. https://doi.org/10.2478/aut-2020-0027

  10. Mitura S, Sionkowska A, Jaiswal A (2020) Biopolymers for hydrogels in cosmetics: review. J Mater Sci Mater Med 31

  11. Notario B, Pinto J, Solorzano E et al (2015) Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer (Guildf) 56:57–67. https://doi.org/10.1016/j.polymer.2014.10.006

    Article  CAS  Google Scholar 

  12. Karim Z, Mathew AP, Grahn M et al (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water. Carbohydr Polym 112:668–676. https://doi.org/10.1016/j.carbpol.2014.06.048

    Article  CAS  PubMed  Google Scholar 

  13. Voisin H, Bergström L, Liu P, Mathew AP (2017) Nanocellulose-based materials for water purification. Nanomaterials 7

  14. Olivera S, Muralidhara HB, Venkatesh K et al (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: A review. Carbohydr Polym 153:600–618. https://doi.org/10.1016/j.carbpol.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  15. Ma J, Yu F, Zhou L et al (2012) Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces 4:5749–5760. https://doi.org/10.1021/am301053m

    Article  CAS  PubMed  Google Scholar 

  16. Ghaedi M, Heidarpour S, Nasiri S, Sahraie R (2012) Comparison of silver and palladium nanoparticles loaded on activated carbon for ef fi cient removal of Methylene blue : Kinetic and isotherm study of removal process. Powder Technol 228:18–25. https://doi.org/10.1016/j.powtec.2012.04.030

    Article  CAS  Google Scholar 

  17. Prasad Reddy J, Rhim JW (2014) Isolation and characterization of cellulose nanocrystals from garlic skin. Mater Lett 129:20–23. https://doi.org/10.1016/j.matlet.2014.05.019

    Article  CAS  Google Scholar 

  18. Hernández-Varela JD, Chanona-Pérez JJ, Calderón Benavides HA et al (2021) Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydr Polym 244:117347. https://doi.org/10.1016/j.carbpol.2020.117347

  19. Fneich F, Ville J, Seantier B, Aubry T (2021) Nanocellulose-based foam morphological, mechanical and thermal properties in relation to hydrogel precursor structure and rheology. Carbohydr Polym 253:117233. https://doi.org/10.1016/j.carbpol.2020.117233

  20. Yadav M, Behera K, Chang YH, Chiu FC (2020) Cellulose nanocrystal reinforced chitosan based UV barrier composite films for sustainable packaging. Polymers (Basel) 12. https://doi.org/10.3390/polym12010202

  21. Tanpichai S, Oksman K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Compos Part A Appl Sci Manuf 88:226–233. https://doi.org/10.1016/j.compositesa.2016.06.002

    Article  CAS  Google Scholar 

  22. Yadav M, Liu YK, Chiu FC et al (2019) Fabrication of cellulose nanocrystal/silver/alginate bionanocomposite films with enhanced mechanical and barrier properties for food packaging application. Nanomaterials 9. https://doi.org/10.3390/nano9111523

  23. Miranda CS, Ferreira MS, Magalhães MT et al (2015) Mechanical, Thermal and Barrier Properties of Starch-based Films Plasticized with Glycerol and Lignin and Reinforced with Cellulose Nanocrystals. Mater Today Proc 2:63–69. https://doi.org/10.1016/j.matpr.2015.04.009

    Article  Google Scholar 

  24. González K, Retegi A, González A et al (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90. https://doi.org/10.1016/j.carbpol.2014.09.055

    Article  CAS  PubMed  Google Scholar 

  25. Arzate-Vázquez I, Chanona-Pérez JJ, Calderón-Domínguez G et al (2012) Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydr Polym 87:289–299. https://doi.org/10.1016/j.carbpol.2011.07.044

    Article  CAS  PubMed  Google Scholar 

  26. Hernández-Varela JD, Chanona-Pérez JJ, Resendis Hernández P et al (2020) Biodegradable Polymers: New Alternatives Using Nanocellulose and Agroindustrial Residues. Microsc Microanal 26:356–359. https://doi.org/10.1017/s1431927620014373

    Article  Google Scholar 

  27. Hernández-Varela JD, Chanona-Pérez JJ, Resendis-Hernández P, et al (2021) Development and characterization of biopolymers films mechanically reinforced with garlic skin waste for fabrication of compostable dishes. Food Hydrocoll 124:107252. https://doi.org/10.1016/j.foodhyd.2021.107252

  28. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599. https://doi.org/10.1016/j.compscitech.2011.07.003

    Article  CAS  Google Scholar 

  29. Buckman J, Bankole SA, Zihms S, et al (2017) Quantifying porosity through automated image collection and batch image processing: Case study of three carbonates and an aragonite cemented sandstone. Geosci 7. https://doi.org/10.3390/geosciences7030070

  30. Jouki M, Khazaei N, Ghasemlou M, Hadinezhad M (2013) Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr Polym 96:39–46. https://doi.org/10.1016/j.carbpol.2013.03.077

    Article  CAS  PubMed  Google Scholar 

  31. Dudek G, Turczyn R (2018) New type of alginate/chitosan microparticle membranes for highly efficient pervaporative dehydration of ethanol. RSC Adv 8:39567–39578. https://doi.org/10.1039/c8ra07868h

    Article  CAS  Google Scholar 

  32. Gupta H, Kumar H, Kumar M et al (2019) Synthesis of biodegradable films obtained from rice husk and sugarcane bagasse to be used as food packaging material. Environ Eng Res 25:506–514. https://doi.org/10.4491/eer.2019.191

    Article  Google Scholar 

  33. Banerjee S, Gautam RK, Jaiswal A et al (2015) Rapid scavenging of methylene blue dye from a liquid phase by adsorption on alumina nanoparticles. RSC Adv 5:14425–14440. https://doi.org/10.1039/c4ra12235f

    Article  CAS  Google Scholar 

  34. Shih CM, Shieh YT, Twu YK (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174. https://doi.org/10.1016/j.carbpol.2009.04.031

    Article  CAS  Google Scholar 

  35. Lawrie G, Keen I, Drew B et al (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8:2533–2541. https://doi.org/10.1021/bm070014y

    Article  CAS  Google Scholar 

  36. Fan L, Yang H, Yang J et al (2016) Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr Polym 146:427–434. https://doi.org/10.1016/j.carbpol.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  37. Baysal K, Aroguz AZ, Adiguzel Z, Baysal BM (2013) Chitosan/alginate crosslinked hydrogels: Preparation, characterization and application for cell growth purposes. Int J Biol Macromol 59:342–348. https://doi.org/10.1016/j.ijbiomac.2013.04.073

    Article  CAS  PubMed  Google Scholar 

  38. Pereira R, Tojeira A, Vaz DC et al (2011) Preparation and characterization of films based on alginate and aloe vera. Int J Polym Anal Charact 16:449–464. https://doi.org/10.1080/1023666X.2011.599923

    Article  CAS  Google Scholar 

  39. Wang G, Wang X, Huang L (2017) Feasibility of chitosan-alginate (Chi-Alg) hydrogel used as scaffold for neural tissue engineering: a pilot study in vitro. Biotechnol Biotechnol Equip 31:766–773. https://doi.org/10.1080/13102818.2017.1332493

    Article  CAS  Google Scholar 

  40. Antonino RSCMDQ, Fook BRPL, Lima VADO et al (2017) Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs 15:1–12. https://doi.org/10.3390/md15050141

    Article  CAS  Google Scholar 

  41. Zhang M, Jiang S, Han F et al (2021) Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydr Polym 264:118033. https://doi.org/10.1016/j.carbpol.2021.118033

    Article  CAS  PubMed  Google Scholar 

  42. Precht R, Stolz S, Mankel E et al (2016) Investigation of sodium insertion into tetracyanoquinodimethane (TCNQ): Results for a TCNQ thin film obtained by a surface science approach. Phys Chem Chem Phys 18:3056–3064. https://doi.org/10.1039/c5cp06659j

    Article  CAS  PubMed  Google Scholar 

  43. Briggs D (2005) X-ray photoelectron spectroscopy (XPS). Handb Adhes Second Ed 621–622. https://doi.org/10.1002/0470014229.ch22

  44. Pawar SV, Yadav GD (2014) PVA/chitosan-glutaraldehyde cross-linked nitrile hydratase as reusable biocatalyst for conversion of nitriles to amides. J Mol Catal B Enzym 101:115–121. https://doi.org/10.1016/j.molcatb.2014.01.005

    Article  CAS  Google Scholar 

  45. Pan J, Li Y, Chen K et al (2021) Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking. Carbohydr Polym 266:118102. https://doi.org/10.1016/j.carbpol.2021.118102

    Article  CAS  PubMed  Google Scholar 

  46. Prasad Reddy J, Rhim JW (2018) Extraction and Characterization of Cellulose Microfibers from Agricultural Wastes of Onion and Garlic. J Nat Fibers 15:465–473. https://doi.org/10.1080/15440478.2014.945227

    Article  CAS  Google Scholar 

  47. Aguayo MG, Pérez AF, Reyes G et al (2018) Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the Kraft Pulping process. Polymers (Basel) 10. https://doi.org/10.3390/polym10101145

  48. Reddy KO, Maheswari CU, Dhlamini MS et al (2018) Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydr Polym 188:85–91. https://doi.org/10.1016/j.carbpol.2018.01.110

    Article  CAS  PubMed  Google Scholar 

  49. He H, Wang Y, Yu Z et al (2021) Ecofriendly flame-retardant composite aerogel derived from polysaccharide: Preparation, flammability, thermal kinetics, and mechanism. Carbohydr Polym 269:118291. https://doi.org/10.1016/j.carbpol.2021.118291

  50. Xing L, Sun J, Tan H et al (2019) Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering. Int J Biol Macromol 127:340–348. https://doi.org/10.1016/j.ijbiomac.2019.01.065

    Article  CAS  PubMed  Google Scholar 

  51. Wan C, Jiao Y, Wei S et al (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: A review. Chem Eng J 359:459–475. https://doi.org/10.1016/j.cej.2018.11.115

    Article  CAS  Google Scholar 

  52. Kononova SV, Volod AV, Petrova VA, Kruchinina EV (2018) Pervaporation multilayer membranes based on a polyelectrolyte complex of λ carrageenan and chitosan. Carbohydr Polym 181:86–92. https://doi.org/10.1016/j.carbpol.2017.10.050

    Article  CAS  PubMed  Google Scholar 

  53. Peña-Reyes VL, Marin-Bustamante MQ, Manzo-Robledo A et al (2017) Effect of crosslinking of alginate / pva and chitosan / pva, reinforced with cellulose nanoparticles obtained from agave Atrovirens karw. Procedia Eng 200:434–439. https://doi.org/10.1016/j.proeng.2017.07.061

    Article  CAS  Google Scholar 

  54. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  55. Vicente-Flores M, Güemes-Vera N, Chanona-Pérez JJ et al (2020) Study of cellular architecture and micromechanical properties of cuajilote fruits (Parmentiera edulis D. C.) using different microscopy techniques. Microsc Res Tech 83:1–16. https://doi.org/10.1002/jemt.23559

    Article  CAS  Google Scholar 

  56. Rojas-Candelas LE, Chanona-Pérez JJ, Méndez Méndez JV et al (2021) Physicochemical, structural and nanomechanical study elucidating the differences in firmness among four apple cultivars. Postharvest Biol Technol 171. https://doi.org/10.1016/j.postharvbio.2020.111342

  57. Morales-Hernández JA, Chanona-Pérez JJ, Villanueva-Rodríguez SJ et al (2019) Technological and Structural Properties of Oat Cookies Incorporated with Fructans (Agave tequilana Weber). Food Biophys 14:415–424. https://doi.org/10.1007/s11483-019-09589-9

    Article  Google Scholar 

  58. Salgado-Cruz M de la P, Ramírez-Miranda M, Díaz-Ramírez M, et al (2017) Microstructural characterisation and glycemic index evaluation of pita bread enriched with chia mucilage. Food Hydrocoll 69:141–149. https://doi.org/10.1016/j.foodhyd.2017.01.027

  59. Díaz-Ramírez M, Calderón-Domínguez G, Chanona-Pérez JJ et al (2013) Modelling sorption kinetic of sponge cake crumb added with milk syrup. Int J Food Sci Technol 48:1649–1660. https://doi.org/10.1111/ijfs.12135

    Article  CAS  Google Scholar 

  60. Caprifico AE, Polycarpou E, Foot PJS, Calabrese G (2021) Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol Biosci 21:1–27. https://doi.org/10.1002/mabi.202000312

    Article  CAS  Google Scholar 

  61. Tully E, O’Kennedy R (2008) Fluorescent Labeling. In: Li D (ed) Encyclopedia of Microfluidics and Nanofluidics. Springer, Boston, M, pp 737–749

  62. Bump S, Böhm A, Babel L et al (2015) Spatial, spectral, radiometric, and temporal analysis of polymer-modified paper substrates using fluorescence microscopy. Cellulose 22:73–88. https://doi.org/10.1007/s10570-014-0499-5

    Article  CAS  Google Scholar 

  63. Jagadeesh D, Jeevan Prasad Reddy D, Varada Rajulu A (2011) Preparation and Properties of Biodegradable Films from Wheat Protein Isolate. J Polym Environ 19:248–253. https://doi.org/10.1007/s10924-010-0271-3

    Article  CAS  Google Scholar 

  64. Zhu T, Mao J, Cheng Y et al (2019) Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv Mater Interfaces 6. https://doi.org/10.1002/admi.201900761

  65. Jussen D, Sharma S, Carson JK, Pickering KL (2020) Preparation and tensile properties of guar gum hydrogel films. Polym Polym Compos 28:180–186. https://doi.org/10.1177/0967391119867560

    Article  CAS  Google Scholar 

  66. Hu Y, Thalangamaarachchige VD, Acharya S, Abidi N (2018) Role of low-concentration acetic acid in promoting cellulose dissolution. Cellulose 25:4389–4405. https://doi.org/10.1007/s10570-018-1863-7

    Article  CAS  Google Scholar 

  67. Besharati N, Alizadeh N, Shariati S (2018) Removal of cationic dye methylene blue (Mb) from aqueous solution by coffee and peanut husk modified with magnetite iron oxide nanoparticles. J Mex Chem Soc 62:110–124. https://doi.org/10.29356/jmcs.v62i3.433

Download references

Acknowledgements

J.D. Hernández-Varela wish to thank CONACyT, BEIFI and Instituto Politécnico Nacional (IPN) in Mexico City for the scholarship provided during his PhD studies, and the financial support provided by CONACyT (239899, 268660) and Secretaria de Investigación y Posgrado at IPN (20195198, 20200506 and 20210065) projects.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Investigation, Writing- Original draft preparation, Visualization: Josué David Hernández-Varela; Methodology, Writing- Original draft preparation: Silvia Leticia Villaseñor-Altamirano; Resources, Supervision, Writing- Reviewing and Editing, Project administration: José Jorge Chanona-Pérez; Methodology, Writing- Original draft preparation: Lizbeth González Victoriano; Writing- Reviewing and Editing: María de Jesús Perea Flores; Writing—Reviewing and Editing: Héctor Alfredo Calderón Benavides; Writing- Reviewing and Editing: Felipe Cervantes Sodi; Methodology, Writing- Reviewing and Editing: Eduardo Martínez Mercado; Methodology: Pilar Morgado Aucar.

Corresponding author

Correspondence to José Jorge Chanona-Pérez.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1060 KB)

Supplementary file2 (DOCX 1737 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Varela, J.D., Villaseñor-Altamirano, S.L., Chanona-Pérez, J.J. et al. Effect of cellulose nanoparticles from garlic waste on the structural, mechanical, thermal, and dye removal properties of chitosan/alginate aerogels. J Polym Res 29, 133 (2022). https://doi.org/10.1007/s10965-022-02926-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02926-6

Keywords

Navigation