Skip to main content
Log in

Thermo-oxidative ageing of a SBR rubber: effects on mechanical and chemical properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, the effects of thermo-oxidative ageing at different temperatures and for different exposure durations on the mechanical and the chemical properties of a styrene butadiene rubber (SBR) are presented. Uniaxial tensile tests, hardness measurements, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) spectra analysis, and swelling tests are carried out on as-received and aged samples. Accelerated ageing process was conducted at different temperatures (\(50^\circ C\), \(70^\circ C\), \(90^\circ C\), and \(100^\circ C\)) and for different exposure durations \((7, 14, 21, 28, 35, 45\) and \(60\) days).This work confirm that accelerated ageing lead to a decrease of the ultimate mechanical properties and of the molar mass between cross-links in one hand, and an increase of the cross-linking density and of the material hardness, in another hand. ATR-FTIR analysis shows significant changes in the chemical structure of aged SBR samples dominated by the thermo-oxidative process, which is, mainly pronounced at high temperature and long exposure time. The ultimate mechanical properties are related to the average molar mass between cross-links. A threshold value of this property corresponding to a complete degradation of the rubber can be determined. Finally, the time–temperature equivalence principle is applied to build master curves describing the evolution of certain quantities such as molar mass between crosslinks, tensile strength, and strain at break versus the reduced time. A predictive modeling of the stress and strain at break as function of the effective ageing time is proposed which give satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References lists

  1. Kashi S, Varley R, De Souza M, Al-Assafi S, Di Pietro A, de Lavigne C, Fox B (2018) Mechanical, thermal, and morphological behavior of silicone rubber during accelerated aging. Polym Plast Technol Eng 57(16):1687–1696

    CAS  Google Scholar 

  2. Ben Hassine M, Naït-Abdelaziz M, Zaïri F, Colin X, Tourcher C, Marque G (2014) Time to failure prediction in rubber components subjected to thermal ageing: A combined approach based upon the intrinsic defect concept and the fracture mechanics. Mech Mater 79:15–24

    Google Scholar 

  3. Woo CS, Choi SS, Lee SB, Kim HS (2010) Useful lifetime prediction of rubber components using accelerated testing. IEEE T Reliab 59(1):11–17

    Google Scholar 

  4. Wei H, Guo L, Zheng J, Huang G, Li G (2015) Effect of nanosilica-based immobile antioxidant on thermal oxidative degradation of SBR. RSCAdv 5:62788–62796

    CAS  Google Scholar 

  5. Diez J, Bellas R, López J (2010) Study of the crosslink density, dynamo-mechanical behaviour and microstructure of hot and cold SBRvulcanizates. J Polym Res 17:99–107

    CAS  Google Scholar 

  6. Eissa MM, BotrosSH and AF Moustafa, (2018) Triblock copolymers– modified SBR/EPDM rubber blends. J Elas&Plast 50(2):151–161

    CAS  Google Scholar 

  7. Ismail H, Che Mat NS, Othman N (2018) Curing characteristics, tear, fatigue, and aging properties of bentonite-filled ethylene-propylene-diene (EPDM) rubber composites. J Vinyl AdditTechn 24(S1):77–84

    Google Scholar 

  8. Li X, Bai T, Li Z, Liu L (2016) Influence of the temperature on the hyper-elastic mechanical behavior of carbon black filled natural rubbers. Mech Mater 95:136–145

    Google Scholar 

  9. Nabil H, Ismail H, Azura AR (2013) Comparison of thermo-oxidative ageing and thermal analysis of carbon black-filled NR/Virgin EPDM and NR/Recycled EPDM blends. Polym Test 32(4):631–639

    CAS  Google Scholar 

  10. Mostafa A, Abouel-Kasem A, BayoumiMR E-S (2009) The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature. Mater Des 30(3):791–795

    CAS  Google Scholar 

  11. Wang Q, Zeng J, Zhou X, Jieqiong Y (2016) Irradiation vulcanized styrene-butadiene rubber/nanoscale silica composites. J Polym Res 23:11

    CAS  Google Scholar 

  12. Liu J, Li X, Xu L, Zhang P (2016) Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment. Polym Test 54:59–66

    CAS  Google Scholar 

  13. Boubakri A, Haddar N, Elleuch K, Bienvenu Y (2011) Influence of thermal aging on tensile and creep behaviour of thermoplastic polyurethane. C R Mécanique 339:666–673

    CAS  Google Scholar 

  14. Carli LN, Bianchi O, Mauler RS, Crespo JS (2012) Accelerated aging of elastomeric composites with vulcanized ground scraps. J ApplPolymSci 123(1):280–285

    CAS  Google Scholar 

  15. Choi SS, Kim JC (2012) Lifetime prediction and thermal aging behaviors of SBR and NBR composites using cross-link density changes. J IndEngChem 18(3):1166–1170

    CAS  Google Scholar 

  16. Ha-Anh T, Vu-Khanh T (2005) Prediction of mechanical properties of polychloroprene during thermo-oxidative aging. Polym Test 24(6):775–780

    CAS  Google Scholar 

  17. Behnke R, Kaliske M (2018) Numerical modeling of thermal aging in steady state rolling tires. Int J Non-Linear Mech 103:145–153

    Google Scholar 

  18. Deroiné M, Le Duigo A, Corre YM, Le Gac PY, Daves P, César G, Bruzaud S (2014) Accelerated ageing and lifetime prediction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym Test 39:70–78

    Google Scholar 

  19. Xu T, Jia Z, Li J, Luo Y, Jia D, Peng Z (2018) Study on the dispersion of carbon black/silica in SBR/BR composites and its properties by adding epoxidized natural rubber as a compatilizer. Polym Compos 39(2):377–385

    CAS  Google Scholar 

  20. Cheng X, Song P, Zhao X, Peng Z, Wang S (2018) Liquefaction of ground tire rubber at low temperature. Waste Manag 71:301–310

    PubMed  Google Scholar 

  21. Pasbakhsh P, Ismail H, FauziMNA BakarAA (2010) EPDM/modified halloysite nanocomposites. Appl Clay Sci 48(3):405–413

    CAS  Google Scholar 

  22. Marzocca AJ (2007) Evaluation of the polymer-solvent interaction parameter v for the system cured styrene butadiene rubber and toluene. Eur Polym J 43(6):2682–2689

    CAS  Google Scholar 

  23. Salgueiro W, Marzocca A, Somoza A, Consolati G, Cerveny S, Quasso F, Goyanes S (2004) Dependence of the network structure of cured styrene butadiene rubber on the sulphur content. Polymer 45(17):6037–6044

    CAS  Google Scholar 

  24. Ghosh J, Ghorai S, Bhunia S, Roy M, De D (2018) The role of devulcanizing agent for mechanochemicaldevulcanization of styrene butadiene rubber vulcanizate. Polym Eng Sci 58(1):74–85

    CAS  Google Scholar 

  25. Ismail H, Muniandy K, Othman N (2012) Fatigue life, morphological studies, and thermal aging of rattan powder-filled natural rubber composites as a function of filler loading and a silane coupling agent. BioResources 7(1):841–858

    CAS  Google Scholar 

  26. Rivlin RS (1948) Large elastic deformations of isotropic materials. Philosophical Transactions of the Royal Society Series A 241:459–525

    Google Scholar 

  27. Ogden RW (1984) Non linear elastic deformation. Ellis-Horwood Limited Publishers, England

    Google Scholar 

  28. Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63:792–805

    CAS  Google Scholar 

  29. Treloar LRG (1943) The elasticity of a network of long chain molecules. Trans Faraday Soc 39:36–41

    CAS  Google Scholar 

  30. James HM, Guth E (1943) Theory of elastic properties of rubbers. J Chem Phys 11:455–481

    CAS  Google Scholar 

  31. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J Mech Phys Solids 41(2):389–412

    CAS  Google Scholar 

  32. Wu PD, van der Giessen E (1993) On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J Mech Phys Solids 41(3):427–456

    CAS  Google Scholar 

  33. Kalidaha AK, De PP, Sen AK (1993) Ageing and degradation of polychloroprene and its blends with ethylene–propylene–diene rubber. Polym Degrad Stab 39(2):179–186

    CAS  Google Scholar 

  34. Maciejewska M, Zaborski M (2018) Ionic liquids as coagents for sulfur vulcanization of butadiene–styrene elastomer filled with carbon black. Polym Bull 75:4499–4514

    CAS  Google Scholar 

  35. Zhao Q, Li X, Gao J (2007) Aging of ethylene-propylene-diene monomer (EPDM) in artificial weathering environment. Polym Degrad Stab 92(10):1841–1846

    CAS  Google Scholar 

  36. Singh R, Shah MD, Jain SK, Shit SC, Giri R (2013) Elastomeric composite: mechanical and thermal properties of styrene butadiene rubber (SBR) based on carbon black and nanoclay. J Inf Knowl Res Mech Eng 2:515–521

    Google Scholar 

  37. Zhi J, Wang Q, Zhang M, Zhou Z, Liu A, Jia Y (2019) Coupled analysis on hyper-viscoelastic mechanical behavior and macromolecular network alteration of rubber during thermo-oxidative aging process. Polymer 171(8):15–24

    CAS  Google Scholar 

  38. Zanchet A, Carli LN, Giovanela M, Brandalise RN, CrespoJS, (2012) Use of styrene butadiene rubber industrial waste devulcanized by microwave in rubber composites for automotive application. Mater Des 39:437–443

    CAS  Google Scholar 

  39. Delor-Jestin F, Barrois-Oudin N, Cardinet C, Lacoste J, Lemaire J (2000) Thermal ageing of acrylonitrile-butadiene copolymer. Polym Degrad Stab 70(1):1–4

    CAS  Google Scholar 

  40. Ma L, Liu M, Peng Q, Liu Y, Luo B, Zhou C (2016) Cross-linked carboxylated SBR composites reinforced with chitin nanocrystals. J Polym Res 23(7):134

    Google Scholar 

  41. Guo L, HuangG ZJ, Li G (2014) Thermal oxidative degradation of styrene-butadiene rubber (SBR) studied by 2D correlation analysis and kinetic analysis. J Thermal Anal Calorim 115:647–657

    CAS  Google Scholar 

  42. Allen NS, Barcelona A, Edge M, Wilkinson A, Merchan CG, Santa Quiteria VR (2004) Thermal and photo oxidation of high styrene butadiene copolymer (SBC). Polym Degrad Stab 86(1):11–23

    CAS  Google Scholar 

  43. Abdel-Hakim A, El-Mogy SA, EL-Zayat MM, (2019) Radiation cross-linking of acrylic rubber/styrene butadiene rubber blends containing polyfunctional monomers. Radiat Phys Chem 157:91–96

    CAS  Google Scholar 

  44. Wu S (1989) Chain structure and entanglement. J Polym Sci. Part B Polym Phys Ed 27:723–741

    CAS  Google Scholar 

  45. Semsarzadeh MA, Bakhshandeh GR, Ghasemzadeh M (2005) Effect of Carbon Black on Rate Constant and Activation Energy of Vulcanization in EPDM/BR and EPDM/NR Blends. Iran Polym J 14(6):573–578

    CAS  Google Scholar 

  46. Guth E (1945) Theory of filler reinforcement. J Appl Phys 16:20–25

    CAS  Google Scholar 

  47. NaitAbdelaziz M, Ayoub G, Colinc X, Benhassine M, Mouwakeh M (2019) New developments in fracture of rubbers: Predictive tools and influence of thermal aging International. Int J Solids Struct 165:127–136

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Vibracoustic AG Compagny and more specifically Dr Pierre Charrier, who has been collaborating with the University of Lille for many years, for providing the material and without whom this work could not have taken place.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Méziane Aberkane.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezig, N., Bellahcene, T., Aberkane, M. et al. Thermo-oxidative ageing of a SBR rubber: effects on mechanical and chemical properties. J Polym Res 27, 339 (2020). https://doi.org/10.1007/s10965-020-02330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02330-y

Keywords

Navigation