Skip to main content
Log in

Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the effect of the structure and amount of the chain extenders on the morphological image and physico-chemical properties of some new polyurethane elastomers has been investigated. To achieve this, three series of polyurethane elastomers based on poly(tetramethylene ether) glycol, hexamethylene diisocyanate and chain extenders with different structures (triethylene glycol, 3,6-dithia-1,8-octanediol, 1,6-hexanediol) were synthesized. The chain-extenders which introduce oxygen or sulfur atoms into the polyurethane backbone chains (hard domains) change the behavior of the properties compared to the corresponding polyurethanes chain-extended with aliphatic diols. The structures of the new polyurethane elastomers were examined by FTIR, X-ray diffraction analysis and by atomic force microscopy (AFM). They were also characterized for thermal and tensile properties. The polyurethanes with sulfur into their hard segment structure were found to exhibit improved thermal stability properties and equivalent mechanical properties with polyurethanes obtained with aliphatic diols. This is due to the extensive and many fold hydrogen bond network that characterizes polyurethanes with sulfur in their hard segment structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications – a review. RSC Adv 6:114453–114482

    Article  CAS  Google Scholar 

  2. Yang Y, Cao X, Luo H, Cai X (2018) Thermal stability and decomposition behaviors of segmented copolymer poly(urethane-urea-amide). J Polym Res 25:242

    Article  Google Scholar 

  3. Baez JE, Marcos-Fernandez A, Navarro R, Garcia C, Ramirez-Hernandez A, Moreno KJ (2019) A systematic study of macrodiols and poly(ester-urethanes) derived from α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH) with different ether [CH2CH2O]m groups. Synthesis and characterization. J Polym Res 26:32

    Article  Google Scholar 

  4. Oprea S, Potolinca VO, Oprea V (2018) Influence of the hydroquinone ether moieties and bisphenol A glycerolate diacrylate on the UV stability behavior of new polyurethane materials. J Polym Res 25:79

    Article  Google Scholar 

  5. Sawpan MA (2018) Polyurethanes from vegetable oils and applications: a review. J Polym Res 25:184

    Article  Google Scholar 

  6. Su S-K, Gu J-H, Lee H-T, Wu C-L, Su Y-R, Suen M-C (2018) Biodegradable polyurethanes: novel effects of the fluorine-containing chain extender on the thermal, physical and water vapor permeation properties. J Polym Res 25:227

    Article  Google Scholar 

  7. Trinca RB, Felisberti MI (2015) Segmented polyurethanes based on poly(L-lactide), poly(ethylene glycol) and poly(trimethylene carbonate): Physico-chemical properties and morphology. Eur Polym J 62:77–86

    Article  CAS  Google Scholar 

  8. Lakatos C, Czifrak K, Papp R, Karger-Kocsis J, Zsuga M, Keki S (2016) Segmented linear shape memory polyurethanes with thermoreversible Diels-Alder coupling: effects of polycaprolactone molecular weight and diisocyanate type. Express Polym Lett 10:324–336

    Article  CAS  Google Scholar 

  9. Oprea S, Potolinca VO, Oprea V (2016) Synthesis and properties of new crosslinked polyurethane elastomers based on isosorbide. Eur Polym J 83:161–172

    Article  CAS  Google Scholar 

  10. Zhang N, Yin S, Hou Z, Xu W, Zhang J, Xiao M, Zhang Q (2018) Preparation, physicochemical properties and biocompatibility of biodegradable poly(ether-ester-urethane) and chitosan oligosaccharide composites. J Polym Res 25:212

    Article  Google Scholar 

  11. Mystkowska J, Mazurek-Budzynska M, Piktel E, Niemirowicz K, Karalus W, Deptula P, Pogoda K, Lysik D, Dąbrowski JR, Rokicki G, Bucki R (2017) Assessment of aliphatic poly(ester-carbonate-urea-urethane)s potential as materials for biomedical application. J Polym Res 24:144

    Article  Google Scholar 

  12. Li Q, Zhou H, Wicks DA, Hoyle CE, Magers DH, McAlexander HR (2009) Comparison of small molecule and polymeric urethanes, thiourethanes, and dithiourethanes: hydrogen bonding and thermal, physical, and mechanical properties. Macromolecules 42:1824–1833

    Article  CAS  Google Scholar 

  13. Campinez MD, Ferris C, de Paz MV, Aguilar-de-Leyva A, Galbis J, Caraballo I (2015) A new biodegradable polythiourethane as controlled release matrix polymer. Int J Pharm 480:63–72

    Article  CAS  Google Scholar 

  14. Kultys A, Rogulska M, Pikus S (2008) The synthesis and characterization of new thermoplastic poly(thiourethane-urethane)s. J Polym Sci A Polym Chem 46:1770–1782

    Article  CAS  Google Scholar 

  15. Kultys A, Rogulska M, Pikus S (2012) New thermoplastic segmented polyurethanes with hard segments derived from 4,4′-diphenylmethane diisocyanate and methylenebis(1,4-phenylenemethylenethio)dialcanols. J Appl Polym Sci 123:331–346

    Article  CAS  Google Scholar 

  16. Rogulska M, Podkomcielny W, Kultys A, Pikus S, Posdzik E (2006) Studies on thermoplastic polyurethanes based on new diphenylethane-derivative diols. I. Synthesis and characterization of nonsegmented polyurethanes from HDI and MDI. Eur Polym J 42:1786–1797

    Article  CAS  Google Scholar 

  17. Kultys A, Puszka A (2014) Transparent poly(thiourethane-urethane)s based on dithiol chain extender. Synthesis and characterization. J Therm Anal Calorim 117:1427–1439

    Article  CAS  Google Scholar 

  18. Altıntas Z, Cakmakcı E, Kahraman MV, Kayaman-Apohan N (2015) Thioether functional chain extender for thermoplastic polyurethanes. Chin J Polym Sci 33:850–856

    Article  Google Scholar 

  19. Rogulska M, Kultys A, Olszewska E (2013) New thermoplastic poly(thiourethane-urethane) elastomers based on hexane-1,6-diyl diisocyanate (HDI). J Therm Anal Calorim 114:903–916

    Article  CAS  Google Scholar 

  20. Rogulska M, Kultys A, Lubczak J (2015) New thermoplastic polyurethane elastomers based on aliphatic–aromatic chain extenders with different content of sulfur atoms. J Therm Anal Calorim 121:397–410

    Article  CAS  Google Scholar 

  21. Jaffrennou B, Droger N, Mechin F, Halary J-L, Pascault J-P (2005) Characterization, structural transitions and properties of a tightly crosslinked polythiourethane network for optical applications. e-Polymers no. 082

  22. He C, Zhang C, Zhang O (2009) Synthesis and thermal properties of polythioether-based liquid-crystalline polymers containing azobenzene in the side chain. Polym Int 58:1071–1077

    Article  CAS  Google Scholar 

  23. Strzelec K, Baczek N, Szynkowska M, Grams J (2014) Thiirane resins cured with polythiourethane hardeners as novel supports for metal complex catalysts. J Appl Polym Sci 131:40330

    Article  Google Scholar 

  24. Biswal HS (2015) Hydrogen bonds involving sulfur: new insights from ab initio calculations and gas phase laser spectroscopy. In: Scheine S (ed) Challenges and advances in computational chemistry and physics. Springer International Publishing Switzerland 15:19

  25. Oprea S, Potolinca VO, Varganici C-D (2016) Synthesis and properties of polyurethane urea with pyridine-2,6-dicarboxamide moieties in their structure. RSC Adv 6:106904–106913

    Article  CAS  Google Scholar 

  26. Talakesh MM, Sadeghi M, Chenar MP, Khosravi A (2012) Gas separation properties of poly(ethyleneglycol)/poly(tetramethylene glycol) based polyurethane membranes. J Membr Sci 415–416:469–477

    Article  Google Scholar 

  27. Gorna K, Polowinski S, Gogolewski S (2002) Synthesis and characterization of biodegradable poly(e-caprolactone urethane)s. I. Effect of the polyol molecular weight, catalyst, and chain extender on the molecular and physical characteristics. J Polym Sci A Polym Chem 40:156–170

    Article  CAS  Google Scholar 

  28. Puszka A, Kultys A (2017) The influence of soft segments on some properties of new transparent segmented polyurethanes. Polym Adv Technol 28:1937–1944

    Article  CAS  Google Scholar 

  29. Wu Y, Cao Y-Y, Wu S-P, Li Z-F (2012) Preparation and properties of adjacency crosslinked polyurethane–urea elastomers. Front Mater Sci 6(4):347–357

    Article  Google Scholar 

  30. Lei W, Fang C, Zhou X, Li J, Yang R, Zhang Z, Liu D (2017) Thermal properties of polyurethane elastomer with different flexible molecular chain based on para-phenylene diisocyanate. J Mater Sci Technol 33:1424–1432

    Article  Google Scholar 

  31. Moon S-Y, Park Y-D, Kim C-J, Won CH, Lee Y-S (2003) Effect of chain extenders on polyurethanes containing both poly(butylene succinate) and poly(ethylene glycol) as soft segments. Bull Kor Chem Soc 24:1361–1364

    Article  CAS  Google Scholar 

  32. Blackwell J, Nagarajan MR, Hoitink TB (1982) Structure of polyurethane elastomers: effect of chain extender length on the structure of MDI/diol hard segments. Polymer 23:950–956

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Oprea.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oprea, S., Timpu, D. & Oprea, V. Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures. J Polym Res 26, 117 (2019). https://doi.org/10.1007/s10965-019-1777-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1777-6

Keywords

Navigation