Skip to main content
Log in

Thermal stability and decomposition behaviors of segmented copolymer poly(urethane-urea-amide)

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyurethane (PU) has become one of the most important segmented copolymers, due to it can be tailored to suit a wide range of application requirements by changing their structures and compositions. Amide, urethane and urea, which are capable of forming intermolecular hydrogen bonding to enhance the microphase separated morphology, are now used to consist segmented copolymers (poly(urethane-urea-amide) PUUA). In order to understand the usage temperature of the material and the protective measures which can be used, we wanted study the thermal stability and degradation process of PUUA. For study the stability of molecule structure, the thermal degradation behaviors of PUUA were extensively investigated with the thermogravimetric analysis (TG) under pure nitrogen and air, firstly. And the degradation activation energy of PUUA was further determined by the Flynn-Wall-Ozawa method. To find the order of thermal stability of bonds, thermogravimeter coupled with FTIR spectrophotometer (TG/FTIR) was used to research their gaseous products and their releasing intensity under nitrogen. In addition, the thermal decomposition behaviors of PUUA under air were also simulated by TG/FTIR. All results demonstrated that the bond of polyurethane decomposed firstly, both under air and nitrogen. And the protection of the bond of polyurethane was beneficial to prolong the service life of PUUA materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Beniah G, Uno BE, Tian L et al (2017) Tuning nanophase separation behavior in segmented polyhydroxyurethane via judicious choice of soft segment[J]. Polymer 110:218–227

    Article  CAS  Google Scholar 

  2. Bondar VI, Freeman BD, Pinnau I (2015) Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers[J]. Journal of Polymer Science Part B Polymer Physics 37(17):2463–2475

    Article  Google Scholar 

  3. Lee HS, Roy A, Badami AS, McGrath JE (2007) Synthesis and characterization of sulfonated poly(arylene ether) polyimide multiblock copolymers for proton exchange membranes[J]. Macromol Res 15(2):160–166

    Article  CAS  Google Scholar 

  4. Miller JA, Lin SB, Hwang KKS, Wu KS, Gibson PE, Cooper SL (1985) Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution[J]. Macromolecules 18(1):32–44

    Article  CAS  Google Scholar 

  5. Mokeev MV, Zuev VV (2015) Rigid phase domain sizes determination for poly(urethane–urea)s by solid-state NMR spectroscopy. Correlation with mechanical properties[J]. Eur Polym J 71:372–379

    Article  CAS  Google Scholar 

  6. Mihajlovic M, Staropoli M, Appavou MS, Wyss HM, Pyckhout-Hintzen W, Sijbesma RP (2017) Tough supramolecular hydrogel based on strong hydrophobic interactions in a multiblock segmented copolymer[J]. Macromolecules 50:3333–3346

    Article  CAS  Google Scholar 

  7. Schreiner C, Bridge AT, Hunley MT, Long TE, Green MD (2017) Segmented imidazolium ionenes: solution rheology, thermomechanical properties, and electrospinning[J]. Polymer 114:257–265

    Article  CAS  Google Scholar 

  8. Luong ND, Le HS, Minna M et al (2016) Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties[J]. Eur Polym J 81:129–137

    Article  Google Scholar 

  9. Mizgajski A, Bródka S, Fagiewicz K et al (2010) Natural conditions as a premise for the development of the Poznań urbanised area[J]. Int J Therm Sci 98:156–164

    Google Scholar 

  10. Chung YC, Han A, Lee GS et al (2016) The effects of grafting bisphenol a or naphthalene derivative onto polyurethane with respect to shape memory and thermal properties[J]. Macromol Res 24(1):1–4

    Article  Google Scholar 

  11. Sheth JP, Klinedinst DB, Wilkes GL, Yilgor I, Yilgor E (2005) Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments[J]. Polymer 46(18):7317–7322

    Article  CAS  Google Scholar 

  12. Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications ☆[J]. Prog Polym Sci 32(3):352–418

    Article  CAS  Google Scholar 

  13. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chem Mater 22(11):3441–3450

    Article  CAS  Google Scholar 

  14. Chen JH, Hu DD, Li YD, Meng F, Zhu J, Zeng JB (2018) Castor oil derived poly(urethane urea) networks with reprocessibility and enhanced mechanical properties[J]. Polymer 143:79–86

    Article  CAS  Google Scholar 

  15. Reis RA, Pereira JHC, Campos ACC, Barboza EM, Delpech MC, Cesar DV, Dahmouche K, Bandeira CF (2018) Waterborne poly(urethane-urea) gas permeation membranes for CO2/CH4 separation[J]. J Appl Polym Sci 135(11)

  16. Buckwalter DJ, Dennis JM, Long TE (2015) Amide-containing segmented copolymers[J]. Prog Polym Sci 45:1–22

    Article  CAS  Google Scholar 

  17. Sheth JP, Xu J, Wilkes GL (2003) Solid state structure–property behavior of semicrystalline poly(ether- block -amide) PEBAX ®;, thermoplastic elastomers[J]. Polymer 44(3):743–756

    Article  CAS  Google Scholar 

  18. Krijgsman J, Husken D, Gaymans RJ (2003) Synthesis and properties of thermoplastic elastomers based on PTMO and tetra-amide[J]. Polymer 44(25):7573–7588

    Article  CAS  Google Scholar 

  19. Kayalvizhi M, Suresh J, Karthik S, Arun A (2016) Synthesis and characterization of MDI and functionalized polystyrene based poly(urethane-urea-amide)[J]. Int J Plast Technol 20(1):128–142

    Article  CAS  Google Scholar 

  20. Kong W, Yang Y, Liu Z, Jiang L, Zhou C, Lei J (2017) Structure–property relations of nylon-6 and polytetramethylene glycol based multiblock copolymers with microphase separation prepared through reactive processing[J]. Polym Int 66:436–442

    Article  CAS  Google Scholar 

  21. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis[J]. J Res Natl Bur Stand 57(4):217–221

    Article  CAS  Google Scholar 

  22. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis[J]. Polym Degrad Stab 93(1):90–98

    Article  CAS  Google Scholar 

  23. Goyenola C, Stafström S, Hultman L et al (2016) Structural patterns arising during synthetic growth of fullerene-like Sulfocarbide[J]. J Phys Chem C 116(39):21124

    Article  Google Scholar 

  24. Sang MS, Kim SH, Song JK (2009) Thermal decomposition behavior and durability evaluation of thermotropic liquid crystalline polymers[J]. Macromol Res 17(3):149–155

    Article  Google Scholar 

  25. Ma Z, Sun Q, Ye J, Yao Q, Zhao C (2016) Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS[J]. J Anal Appl Pyrolysis 117:116–124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the generous supports by the Experiment center of Polymer science and engineering academy, Sichuan University, Chengdu, China. We also acknowledge Ms. Rong Zhang of Sichuan University, who helps us analyses the results of TG/FTIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufu Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Cao, X., Luo, H. et al. Thermal stability and decomposition behaviors of segmented copolymer poly(urethane-urea-amide). J Polym Res 25, 242 (2018). https://doi.org/10.1007/s10965-018-1634-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1634-z

Keywords

Navigation