Skip to main content
Log in

Instabilities in the Mean Field Limit

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Consider a system of N particles interacting through Newton’s second law with Coulomb interaction potential in one spatial dimension or a \(\mathcal {C}^2\) smooth potential in any dimension. We prove that in the mean field limit \(N \rightarrow + \infty \), the N particles system displays instabilities in times of order \(\log N\), for some configurations approximately distributed according to unstable homogeneous equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the precise required smoothness and decay can be quantified from an inspection of our analysis.

References

  1. Barré, J., Hauray, M., Jabin, P.-E.: Stability of trajectories for n-particle dynamics with a singular potential. J. Stat. Mech. Theory Exp. 2010(07), P07005 (2010)

    Article  Google Scholar 

  2. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the \(1/N\) limit of interacting classical particles. Commun. Math. Phys. 56(2), 101–113 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Caglioti, E., Rousset, F.: Quasi-stationary states for particle systems in the mean-field limit. J. Stat. Phys. 129(2), 241–263 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Caglioti, E., Rousset, F.: Long time estimates in the mean field limit. Arch. Ration. Mech. Anal. 190(3), 517–547 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cullen, M., Gangbo, W., Pisante, G.: The semigeostrophic equations discretized in reference and dual variables. Arch. Ration. Mech. Anal. 185(2), 341–363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Degond, P.: Spectral theory of the linearized Vlasov-Poisson equation. Trans. Am. Math. Soc. 294(2), 435–453 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dobrušin, R.L.: Vlasov equations. Funktsional. Anal. i Prilozhen. 13(2), 48–58 (1979)

    MathSciNet  Google Scholar 

  8. Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162(3–4), 707–738 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golse, F.: On the dynamics of large particle systems in the mean field limit. In: Lecture Notes for a Course at the NDNS+ Applied Dynamical Systems Summer School “Macroscopic and large scale phenomena’, Universiteit Twente, Enschede (The Netherlands), pp. 1–133. arXiv:1301.5494 (2013)

  10. Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, Y., Strauss, W.A.: Nonlinear instability of double-humped equilibria. Ann. Inst. H. 12(3), 339–352 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Han-Kwan, D., Nguyen, T.: Nonlinear instability of Vlasov-Maxwell systems in the classical and quasineutral limits. arXiv:1506.08537 (2015)

  13. Han-Kwan, D., Hauray, M.: Stability issues in the quasineutral limit of the one-dimensional Vlasov-Poisson equation. Commun. Math. Phys. 334(2), 1101–1152 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hauray, M.: Mean field limit for the one dimensional Vlasov-Poisson equation. Sémin. Laurent. Schwartz. 21(16), 2012–2013 (2013)

    Google Scholar 

  15. Hauray, M., Jabin, P.-E.: \(N\)-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal. 183(3), 489–524 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hauray, M., Jabin, P.-E.: Particles approximations of Vlasov equations with singular forces: Propagation of chaos. Ann. Sci. Éc. Norm. Sup. 48(4), 891–940 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Jabin, P.-E.: A review of the mean field limits for Vlasov equations. Kinet. Relat. Models 7(4), 661–711 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jain, K., Bouchet, F., Mukamel, D.: Relaxation times of unstable states in systems with long range interactions. J. Stat. Mech. Theory Exp. 2007(11), P11008 (2007)

    Article  Google Scholar 

  19. Lazarovici, D.: The Vlasov-Poisson dynamics as the mean-field limit of rigid charges. arXiv:1502.07047 (2015)

  20. Lazarovici, D., Pickl, P.: A mean-field limit for the Vlasov-Poisson system. arXiv:1502.04608 (2015)

  21. Neunzert, H., Wick, J.: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen. In: Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen (Tagung, Math. Forschungsinst., Oberwolfach, 1973), pp. 275–290. Lecture Notes in Mathematics, vol. 395. Springer, Berlin (1974)

  22. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, New York (1983)

    Book  MATH  Google Scholar 

  23. Penrose, O.: Electrostatic instability of a uniform non-Maxwellian plasma. Phys. Fluids 3, 258–265 (1960)

    Article  ADS  MATH  Google Scholar 

  24. Trocheris, M.: On the derivation of the one-dimensional Vlasov equation. Transp. Theory Stat. Phys. 15(5), 597–628 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zheng, Y., Majda, A.: Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data. Commun. Pure Appl. Math. 47(10), 1365–1401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zumbrun, K.: Planar stability criteria for viscous shock waves of systems with real viscosity. In: Hyperbolic Systems of Balance Laws. Lecture Notes in Mathematics, vol. 1911, pp. 229–326. Springer, Berlin (2007)

Download references

Acknowledgments

The first author thanks Maxime Hauray and Frédéric Rousset for stimulating discussions. We are also grateful to Maxime Hauray for explaining to us how to build N particles global flows in the one-dimensional coulombian case. We finally thank the anonymous referees for several insightful comments and suggestions about this work. TN was supported in part by the NSF under Grant DMS-1405728.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Han-Kwan.

Appendix: Linear Estimates

Appendix: Linear Estimates

In this section, we derive estimates on the semigroup \(e^{Lt}\), with the linearized operator L defined by

$$\begin{aligned} L f : = - v \cdot \nabla _x f - E \cdot \nabla _v f_\infty , \quad E (x) = - \iint _{\mathbb {T}^d\times \mathbb {R}^d} \nabla \Phi (x-y) f(y,v)\; dy dv,\end{aligned}$$
(4.8)

for a fixed homogenous profile \(f_\infty = f_\infty (v)\). The linear problem has been studied for the Coulomb potential; for instance, [6, 13] for one dimension and [12] for higher dimensions. The proof presented in [12] applies to the case of smooth potentials, and we shall reproduce it below for the sake of completeness. The estimates are sharp in terms of the growth in time; however we allow losses of derivatives and weights, but these losses are overcome in the scheme used in Proposition 3.1.

Lemma 4.2

(Sharp semigroup bounds) Let \(\Phi \) be a \(\mathcal {C}^2\) smooth potential and let \(f_\infty (v)\) be a smooth unstable equilibrium of L which decays sufficiently fast as \(v \rightarrow \infty \), let \(\lambda _0\) be a maximal unstable eigenvalue. Let \(n\ge 0, m > \frac{d}{2} +1,\) and h be in the \(\langle v \rangle ^{m+2}\)-weighted Sobolev spaces \(H^{n+2}\). Then, \(f = e^{Lt} h\) is well-defined as the solution of the linear problem \((\partial _t - L) f =0\) with the initial data h. Furthermore, there holds

$$\begin{aligned} \Vert \langle v \rangle ^m e^{Lt} h \Vert _{H^{n} } \le C_\beta e^{(\mathfrak {R}\lambda _0+\beta ) t} \big \Vert \langle v \rangle ^{m+2} h\big \Vert _{H^{n+2} }, \quad \forall t\ge 0, \quad \forall \beta >0, \end{aligned}$$
(4.9)

for some constant \(C_\beta \) depending on \(f_\infty \) and \( \beta \).

Proof

Let \(n \ge 0\), \(m_0 > \frac{d}{2}\), and \(m\ge m_0 + 1\). Consider the resolvent equation:

$$\begin{aligned} (\lambda - L)f = h, \quad \, \mathfrak {R}\lambda \ge 0. \end{aligned}$$

Standard \(L^2\) energy estimates produce the bound

$$\begin{aligned} \mathfrak {R}\lambda \Vert \langle v\rangle ^m f\Vert _{L^2}\le & {} \Vert \langle v\rangle ^m \nabla _v f_\infty \Vert _{L^2_v } \Vert E\Vert _{L_x^\infty } + \Vert \langle v\rangle ^m h\Vert _{L^2}\\\le & {} C_0 \Vert \langle v\rangle ^m \nabla _v f_\infty \Vert _{L^2_v} \Vert \langle v \rangle ^{m_0} f\Vert _{L^2} + \Vert \langle v\rangle ^m h\Vert _{L^2}, \end{aligned}$$

in which we have used the estimate (3.5) on E in terms of f. Recalling \(m\ge m_0+1\), we thus deduce the following weighted \(L^2\) resolvent bound

$$\begin{aligned} \Vert \langle v\rangle ^m (\lambda - L)^{-1} h\Vert _{L^2} \le \frac{1}{\mathfrak {R}\lambda - \gamma _{0,m} } \Vert \langle v\rangle ^m h\Vert _{L^2} \end{aligned}$$

for all \(\mathfrak {R}\lambda > \gamma _{0,m}:= C_0 \Vert \langle v\rangle ^m \nabla _v f_\infty \Vert _{L^2_v}\). Similarly, estimates for higher order derivatives are obtained, since we observe that we have for \(\alpha , \beta \in \mathbb {N}^d\),

$$\begin{aligned} \lambda \partial _v^\beta \partial _x^\alpha f + v \cdot \nabla _x \partial _v^\beta \partial _x^\alpha f - \nabla _v \partial _v^\beta f_\infty \cdot \partial _x^\alpha E + [\partial _v^\beta , v\cdot \nabla _x] \partial _x^\alpha f&= \partial _v^\beta \partial _x^\alpha h \end{aligned}$$

in which \([\partial _v^\beta , v\cdot \nabla _x] = \partial _v^\beta (v\cdot \nabla _x ) - v\cdot \nabla _x \partial _v^\beta \). Combining with the estimate (3.5), we get

$$\begin{aligned} \mathfrak {R}\lambda \Vert \langle v\rangle ^m \partial _x^\alpha f \Vert _{L^2}\le & {} \Vert \langle v\rangle ^m\nabla _v f_\infty \cdot \partial _x^\alpha E \Vert _{L^2} + \Vert \langle v\rangle ^m \partial _x^\alpha h \Vert _{L^2} \\\le & {} C_0 \Vert \langle v\rangle ^m\nabla _v f_\infty \Vert _{L^2_v} \Vert \langle v\rangle ^{m_0} f\Vert _{H^{|\alpha |-1 }_x L^2_v} + \Vert \langle v\rangle ^m \partial _x^\alpha h \Vert _{L^2}. \end{aligned}$$

Likewise, we have

$$\begin{aligned} \mathfrak {R}\lambda \Vert \langle v\rangle ^m \partial _v^\beta \partial _x^\alpha f \Vert _{L^2}\le & {} \Vert \langle v\rangle ^m\nabla _v \partial _v^\beta f_\infty \cdot \partial _x^\alpha E\Vert _{L^2} + \Vert \langle v\rangle ^m[\partial _v^\beta , v\cdot \nabla _x] \partial _x^\alpha f\Vert _{L^2}\\&\quad +\, \Vert \langle v\rangle ^m \partial _v^\beta \partial _x^\alpha h \Vert _{L^2} \\\le & {} C_0 \Vert \langle v\rangle ^m\nabla _v \partial _v^\beta f_\infty \Vert _{L^2_v} \Vert \langle v\rangle ^{m_0} f\Vert _{H^{|\alpha |-1}_x L^2_v} \\&+\,C_0 \Vert \langle v\rangle ^m f \Vert _{ H_x^{|\alpha |+1} H_v^{|\beta |-1}} + \Vert \langle v\rangle ^m \partial _v^\beta \partial _x^\alpha h\Vert _{L^2}. \end{aligned}$$

We therefore obtain by induction

$$\begin{aligned} \mathfrak {R}\lambda \Vert \langle v\rangle ^m \partial _v^\beta \partial _x^\alpha f \Vert _{L^2} \le C'_0 \Vert \langle v\rangle ^m f\Vert _{H^{|\alpha |+|\beta |}_x L^2_v} + C'_0 \Vert \langle v\rangle ^m h\Vert _{H^{n}} , \end{aligned}$$

for all multi-indices \(\alpha , \beta \) such that \(|\alpha | + |\beta | \le n\). By induction, this proves that there exists \(\gamma _{n,m}, C_{n,m}>0\) such that

$$\begin{aligned} \mathfrak {R}\lambda \Vert \langle v \rangle ^m f \Vert _{H^{n}}&\le \gamma _{n,m} \Vert \langle v \rangle ^{m_0} f\Vert _{L^2} + C_{n,m} \Vert \langle v\rangle ^m h\Vert _{H^{n}} , \end{aligned}$$
(4.10)

for all \(n\ge 0\) and \(\mathfrak {R}\lambda >0\). In particular, this proves that

$$\begin{aligned} \Vert \langle v \rangle ^m (\lambda - L)^{-1} h\Vert _{H^{n}} \le \frac{C_{n,m}}{\mathfrak {R}\lambda - \gamma _{n,m}} \Vert \langle v \rangle ^m h\Vert _{H^{n}}, \end{aligned}$$

for some positive constant \(C_{\gamma _{n,m}}\), and for all \(\lambda \in \mathbb {C}\) so that \(\mathfrak {R}\lambda >\gamma _{n,m}\). The classical Hille–Yosida theorem then asserts that L generates a continuous semigroup \(e^{Lt}\) on the Banach space \(H^{n}\) with weights; see, for instance, [22] or [26, Appendix A]. We have furthermore the representation formula

$$\begin{aligned} e^{Lt} h= \text {P.V. } \frac{1}{2\pi i} \int _{\gamma - i\infty }^{\gamma + i \infty } e^{\lambda t} (\lambda - L)^{-1} h \; d\lambda \end{aligned}$$
(4.11)

for any \(\gamma > \gamma _{n,m}\), where \(\text {P.V. }\) denotes the Cauchy principal value.

Next, by assumption, \(\lambda _0\) is an unstable eigenvalue with maximal real part, and the resolvent operator \((\lambda - L)^{-1}\) is in fact a well-defined and bounded operator on the weighted space \(H^{n}\) for all \(\lambda \) so that \(\mathfrak {R}\lambda > \mathfrak {R}\lambda _0\). Let \(\beta >0\). By Cauchy’s theorem, we can take \(\gamma = \mathfrak {R}\lambda _0 + \beta \) in the representation (4.11). Since the resolvent operator is bounded, we obtain at once

$$\begin{aligned} \Big \Vert \frac{\langle v \rangle ^m}{2\pi i} \int _{\gamma - iM}^{\gamma + i M} e^{\lambda t} (\lambda - L)^{-1} h \; d\lambda \Big \Vert _{H^{n}} \le C_{\beta , M} e^{(\mathfrak {R}\lambda _0 + \beta ) t} \Vert \langle v \rangle ^m h\Vert _{H^{n}},\end{aligned}$$
(4.12)

for any large but fixed constant M. For what concerns large values of \(\mathfrak {I}\lambda \), we observe directly from the equation \(\lambda f = L f + h\), that one has

$$\begin{aligned} |\lambda | \Vert \langle v \rangle ^m f \Vert _{H^{n}} \le \Vert \langle v \rangle ^m (L f + h) \Vert _{H^{n}} \le C ( \Vert \langle v \rangle ^{m+1} \nabla _xf\Vert _{H^{n}} + \Vert E\Vert _{W^{n,\infty }_x})+ \Vert \langle v \rangle ^m h\Vert _{H^{n}}. \end{aligned}$$

Using (4.10), we get, for some \(C'_{n+1,m+1}>0\),

$$\begin{aligned} |\lambda | \Vert \langle v \rangle ^m (\lambda - L)^{-1} h\Vert _{H^{n}} \le {C'_{n+1,m+1}} \Vert \langle v \rangle ^{m_0} f \Vert _{L^2} + C'_{n+1,m+1} \Vert \langle v \rangle ^{m+1}h \Vert _{H^{n+1}}. \end{aligned}$$

We take \( \mathfrak {R}\lambda = \gamma \), and take

$$\begin{aligned} |\mathfrak {I}\lambda |>\frac{2}{3}C'_{n+1,m+1}. \end{aligned}$$

We end up with

$$\begin{aligned} \Vert \langle v \rangle ^m (\lambda - L)^{-1} h\Vert _{H^{n}} \le \frac{C_\beta }{|\mathfrak {I}\lambda |} \Vert \langle v \rangle ^{m+1} h\Vert _{H^{n+1}}.\end{aligned}$$
(4.13)

Finally, in order to bound the integral for large \(|\mathfrak {I}\lambda |\), we write

$$\begin{aligned} (\lambda - L)^{-1} h = \frac{1}{\lambda }(\lambda - L)^{-1} Lh + \frac{h}{\lambda }. \end{aligned}$$

As a consequence, for \(\gamma = \mathfrak {R}\lambda _0 + \beta \), we get

$$\begin{aligned}&\text {P.V. } \frac{1}{2\pi i} \int _{\{|\mathfrak {I}\lambda |\ge M\}}e^{\lambda t} (\lambda - L)^{-1} h \; d\lambda \\&\quad = \text {P.V. }\frac{1}{2\pi i} \int _{\{|\mathfrak {I}\lambda |\ge M\}} e^{\lambda t} (\lambda - L)^{-1} \frac{Lh}{\lambda } \; d\lambda + \text {P.V. } \frac{1}{2\pi i} \Big [ \int _{\gamma - i\infty }^{\gamma + i \infty } - \int _{\{|\mathfrak {I}\lambda |< M\}} \Big ] e^{\lambda t} \frac{h}{\lambda } \; d\lambda \end{aligned}$$

in which the second integral on the right-hand side is equal to h, whereas the last integral is bounded by \(C_0e^{\gamma t}h\). We consider \(M\ge \frac{2}{3}C'_{n+1,m+1}\) so that the bound (4.13) holds. We deduce

$$\begin{aligned} \Big \Vert \langle v \rangle ^m \int _{\{|\mathfrak {I}\lambda |\ge M\}} e^{\lambda t} (\lambda - L)^{-1} \frac{Lh}{\lambda } \; d\lambda \Big \Vert _{H^{n}}\le & {} C_{\beta , M} e^{\gamma t} \Vert \langle v \rangle ^{m+1} L h\Vert _{H^{n+1}} \int _{\{|\mathfrak {I}\lambda |\ge M\}} |\mathfrak {I}\lambda |^{-2} \; d\mathfrak {I}\lambda \\\le & {} C_{\beta , M} e^{\gamma t} \Vert \langle v \rangle ^{m+2} h\Vert _{H^{n+2}}. \end{aligned}$$

Combining this estimate with (4.12) and (4.11), we conclude the proof of the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han-Kwan, D., Nguyen, T.T. Instabilities in the Mean Field Limit. J Stat Phys 162, 1639–1653 (2016). https://doi.org/10.1007/s10955-016-1455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1455-6

Keywords

Navigation