Skip to main content
Log in

Distribution of a Second-Class Particle’s Position in the Two-Species ASEP with a Special Initial Configuration

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the two-species asymmetric simple exclusion process (ASEP) consisting of \(N-1\) first-class particles and one second-class particle. We assume that all particles are located at arbitrary positions but the second-class particle is the rightmost particle at time \(t=0\). We find the exact formula of the distribution of the second-class particle’s position at time t by directly using the transition probabilities of the two-species ASEP, which is a different approach from the coupling method Tracy and Widom used in [J Phys A 42:425002, 2009].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This work is not based on data, so has no data to share.

References

  1. Ayyer, A., Finn, C., Roy, D.: Matrix product solution of a left-permeable two-species asymmetric exclusion process. Phys. Rev. E 97, 012151 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  2. Borodin, A., Wheeler, M.: Coloured stochastic vertex models and their spectral theory. arXiv:1808.01866

  3. Borodin, A., Bufetov, A.: Color-position symmetry in interacting particle systems. Ann. Probab. 49(4), 1607–1632 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chatterjee, S., Schütz, G.: Determinant representation for some transition probabilities in the TASEP with second class particles. J. Stat. Phys. 140, 900–916 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Evans, M.R., Ferrari, P.A., Mallick, K.: Matrix representation of the stationary measure for the multispecies TASEP. J. Stat. Phys. 135, 217–239 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ferrari, P.A., Kipnis, C.: Second class particles in the rarefaction front. Ann. l’Institut Henri Poincaré 31, 143–154 (1995)

    MATH  Google Scholar 

  8. Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab. 35, 807–832 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferrari, P.A., Pimentel, L.: Competition interfaces and second class particles. Ann. Probab. 33, 1235–1254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Gier, J., Mead, W., Wheeler, M.: Transition probability and total crossing events in the multi-species asymmetric exclusion process. arXiv:2109.14232

  11. Kuan, J.: Determinantal expressions in multi-species TASEP. Symmetry Integrab. Geom.: Methods Appl. (SIGMA) 16, 133 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Lee, E.: Distribution of a particle’s position in the ASEP with the alternating initial condition. J. Stat. Phys. 140, 635–647 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Lee, E.: Some conditional probabilities in the TASEP with second class particles. J. Math. Phys. 58, 123301 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Lee, E.: On the TASEP with the second class particles. Symmetry Integrab. Geom.: Methods Appl. (SIGMA) 14, 006 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Lee, E.: Exact formulas of the transition probabilities of the multi-species asymmetric simple exclusion process. Symmetry Integrab. Geom.: Methods Appl. (SIGMA) 16, 139 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Lee, E., Raimbekov, T.: Simplified forms of the transition probabilities of the two-species ASEP with some initial orders of particles. Symmetry Integrab. Geom.: Methods Appl. (SIGMA) 18, 008 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Mountford, M., Guiol, H.: The motion of a second class particle for the Tasep starting from a decreasing shock profile. Ann. Appl. Probab. 15, 1227–1259 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nejjar, N.: KPZ statistics of second class particles in ASEP via mixing. Commun. Math. Phys. 378, 601–623 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Prolhac, S., Evans, M.R., Mallick, K.: The matrix product solution of the multispecies partially asymmetric exclusion process. J. Phys. A 42, 165004 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Tracy, C., Widom, H.: Integral formulas for the asymmtric simple exclusion process. Commun. Math. Phys. 279, 815–844 (2008)

    Article  ADS  MATH  Google Scholar 

  21. Tracy, C., Widom, H.: On the distribution of a second-class particle in the asymmetric simple exclusion process. J. Phys. A 42, 425002 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Tracy, C., Widom, H.: On the asymmetric simple exclusion process with multiple species. J. Stat. Phys. 150, 457–470 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Tokebayev, Z.: The probability distribution of the species-1 particle in the two-species ASEP with initial configuration \(22\cdots 21\), MS thesis, Nazarbayev University (2022)

Download references

Acknowledgements

This paper is based on the master thesis of one of the authors [23].

Funding

This work was supported by the faculty development competitive research grant (021220FD4251) by Nazarbayev University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunghyun Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ivan Corwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Formulas of \([\textbf{A}_{\sigma }]_{\nu _n,\nu _N}\) in (1)

Appendix A: Formulas of \([\textbf{A}_{\sigma }]_{\nu _n,\nu _N}\) in (1)

In this appendix, we briefly summarize how to find the formulas of \([\textbf{A}_{\sigma }]_{\nu _n,\nu _N}\) in (1), which were developed in [15, 16]. For a permutation \(\sigma \) in the symmetric group \({\mathcal {S}}_N\), \(\textbf{A}_{\sigma }\) is an \(N^N \times N^N\) matrix which is obtained as follows. Let \(\textrm{T}_i\) be the simple transposition which interchanges the \(i^{th}\) element and the \((i+1)^{st}\) element and leaves everything else fixed. Then, any permutation \(\sigma \in {\mathcal {S}}_N\) can be written as a product of simple transpositions, that is,

$$\begin{aligned} \sigma = \textrm{T}_{i_j}\cdots \textrm{T}_{i_1} \end{aligned}$$
(63)

for some \(i_1,\dots , i_j \in \{1,\dots , N-1\}\). Of course, the form of (63) is not unique. For example, a permutation \((321) \in {\mathcal {S}}_3\) is written as

$$\begin{aligned} (321) =\textrm{T}_1\textrm{T}_2\textrm{T}_1 = \textrm{T}_2\textrm{T}_1\textrm{T}_2. \end{aligned}$$

If \(\textrm{T}_i\) interchanges \(\alpha \) at the \(i^{th}\) slot and \(\beta \) at the \((i+1)^{st}\) slot in a permutation, that is,

$$\begin{aligned} \textrm{T}_i(~\cdots ~ \alpha \beta ~\cdots ) =(~\cdots ~ \beta \alpha ~\cdots ), \end{aligned}$$

we denote this \(\textrm{T}_i\) by \(\textrm{T}_i(\beta ,\alpha )\) to show explicitly which numbers are interchanged. For example,

$$\begin{aligned} (321) = \textrm{T}_1(3,2)\textrm{T}_2(3,1)\textrm{T}_1(2,1). \end{aligned}$$

Hence, we may have an expression

$$\begin{aligned} \sigma = \textrm{T}_{i_j}(\beta _j,\alpha _j) \cdots \textrm{T}_{i_1}(\beta _1,\alpha _1) \end{aligned}$$
(64)

for any permutation \(\sigma \). Given \(\textrm{T}_{i}(\beta ,\alpha )\), we define \(N^N \times N^N\) matrix \(\textbf{T}_{i}(\beta ,\alpha )\) by

$$\begin{aligned} \textbf{T}_{i}(\beta ,\alpha ) =\underbrace{\textbf{I}_N ~\otimes ~ \cdots ~ \otimes ~ \textbf{I}_N}_{(i-1) ~\text {times}}~ \otimes ~ \textbf{R}_{\beta \alpha } ~\otimes ~ \underbrace{\textbf{I}_N ~\otimes ~ \cdots ~\otimes ~ \textbf{I}_N}_{(N-i-1)~\text {times}} \end{aligned}$$

where \(\textbf{I}_N\) is the \(N \times N\) identity matrix and \(\textbf{R}_{\beta \alpha }\) is an \(N^2 \times N^2\) matrix, where \(\textbf{R}_{\beta \alpha }\) is defined as follows. Let us label all columns and rows of \(N^2 \times N^2\) matrices by ij where \(i,j =1,\dots , N\) in the lexicographical order. The (ijkl) entry of the matrix \(\textbf{R}_{\beta \alpha }\) is defined to be

$$\begin{aligned} \big [\textbf{R}_{\beta \alpha }\big ]_{ij,kl} = {\left\{ \begin{array}{ll} S_{\beta \alpha }&{} ~\textrm{if}~~ij=kl~\textrm{with}~i=j;\\ P_{\beta \alpha }&{} ~\textrm{if}~~ij=kl~\textrm{with}~i<j;\\ Q_{\beta \alpha }&{} ~\textrm{if}~~ij=kl~\textrm{with}~i>j;\\ pT_{\beta \alpha }&{}~\textrm{if}~~ij=lk~\textrm{with}~i<j;\\ qT_{\beta \alpha }&{}~\textrm{if}~~ij=lk~\textrm{with}~i>j;\\ 0 &{}~\text {for all other cases} \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} S_{\beta \alpha }&= -\frac{p+q\xi _{\alpha }\xi _{\beta } -\xi _{\beta }}{p+q\xi _{\alpha }\xi _{\beta } - \xi _{\alpha }}, \quad P_{\beta \alpha } = \frac{(p-q\xi _{\alpha }) (\xi _{\beta }-1)}{p+q\xi _{\alpha }\xi _{\beta } - \xi _{\alpha }}\\ T_{\beta \alpha }&= \frac{\xi _{\beta }-\xi _{\alpha }}{p+q\xi _{\alpha } \xi _{\beta } - \xi _{\alpha }}, \quad Q_{\beta \alpha } =\frac{(p-q\xi _{\beta })(\xi _{\alpha }-1)}{p+q\xi _{\alpha } \xi _{\beta } - \xi _{\alpha }}. \end{aligned}$$

Now, for a given expression (64), define

$$\begin{aligned} \textbf{A}_{\sigma } := \textbf{T}_{i_j}(\beta _j,\alpha _j) ~\cdots ~ \textbf{T}_{i_1}(\beta _1,\alpha _1). \end{aligned}$$
(65)

It is a known fact that \(\textbf{A}_{\sigma } \) is well-defined in the sense that (65) represents the same matrix for any expression (64). We have just constructed an \(N^N \times N^N\) matrix \(\textbf{A}_{\sigma }\) for a given permutation \(\sigma \). Now, let us label all columns and rows of \(\textbf{A}_{\sigma }\) by \(\nu =i_1\cdots i_N\) where \(i_j \in \{1,\dots , N\},\, j=1,\dots , N\) in the lexicographical order. In this paper, we denote \(2\cdots 212\cdots 2\) by \(\nu _n\) if 1 is the \(n^{\textrm{th}}\) leftmost number.

Since \(\textbf{A}_{\sigma }\) is a product of matrices, in general, the matrix elements \([\textbf{A}_{\sigma }]_{\pi ,\nu }\) are possibly written as a sum of the products of the matrix elements of \(\textbf{T}_{i_j}(\beta _j,\alpha _j),\dots , \textbf{T}_{i_1}(\beta _1,\alpha _1)\) in (65). However, it was shown in [16] that, for some special cases of initial order of particles \(\nu \), \([\textbf{A}_{\sigma }]_{\pi ,\nu }\) are expressed as a product of the matrix elements of \(\textbf{T}_{i_j}(\beta _j,\alpha _j),\dots , \textbf{T}_{i_1}(\beta _1,\alpha _1)\), not a sum of the products. In particular, for the initial order of particles \(\nu _N\), that is, \(2\cdots 21\), the formulas \([\textbf{A}_{\sigma }]_{\nu _n,\nu _N}\) are given in Theorem 1.2 (a), Theorem 1.4, Theorem 1.6, Theorem 1.7, and Proposition 1.8 in [16].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E., Tokebayev, Z. Distribution of a Second-Class Particle’s Position in the Two-Species ASEP with a Special Initial Configuration. J Stat Phys 190, 76 (2023). https://doi.org/10.1007/s10955-023-03085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03085-8

Keywords

Navigation