Skip to main content
Log in

The Semigeostrophic Equations Discretized in Reference and Dual Variables

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the evolution of a system of n particles \({\{(x_i, v_i)\}_{i=1}^{n}}\) in \({\mathbb{R}^{2d}}\) . That system is a conservative system with a Hamiltonian of the form \({H[\mu]=W^{2}_{2}(\mu, \nu^{n})}\) , where W 2 is the Wasserstein distance and μ is a discrete measure concentrated on the set \({\{(x_i, v_i)\}_{i=1}^{n}}\) . Typically, μ(0) is a discrete measure approximating an initial L density and can be chosen randomly. When d  =  1, our results prove convergence of the discrete system to a variant of the semigeostrophic equations. We obtain that the limiting densities are absolutely continuous with respect to the Lebesgue measure. When \({\{\nu^n\}_{n=1}^\infty}\) converges to a measure concentrated on a special d–dimensional set, we obtain the Vlasov–Monge–Ampère (VMA) system. When, d = 1 the VMA system coincides with the standard Vlasov–Poisson system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L. (2004) Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Ambrosio L., Gigli N., Savaré G. Gradient Flows in Metric Spaces and the Wasserstein Spaces of Probability Measures. Lectures in Mathematics ETH Zürich Birkhäuser Verlag, 2005

  3. Aref H. (1983) Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Annu. Rev. Fluid Mech. 15, 345

    Article  ADS  MathSciNet  Google Scholar 

  4. Batt J., Rein G. (1991) Global classical solutions of the periodic Vlasov-Poisson system. C.R. Math. Acad. Sci. Paris 313, 411–416

    MATH  MathSciNet  Google Scholar 

  5. Brenier Y. (1987) Décomposition polaire et réarrangement monotone des champs de vecteurs. C.R. Math. Acad. Sci. Paris 305, 805–808

    MATH  MathSciNet  ADS  Google Scholar 

  6. Brenier Y. A geometric presentation of the semi-geostrophic equations. Unpublished Notes. Newton Institute

  7. Brenier Y. (2000) Derivation of the Euler equations from a caricature of Coulomb interaction. Comm. Math. Phys. 212, 93–104

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Brenier Y. (2000) Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25, 737–754

    MATH  MathSciNet  Google Scholar 

  9. Benamou J.D., Brenier Y. (1998) Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère equations/transport problem. SIAM J. Appl. Math. 58, 1450–1461

    Article  MATH  MathSciNet  Google Scholar 

  10. Brenier Y., Loeper G. (2004) A geometric approximation to the Euler equations: The Vlasov-Monge-Ampere equation. Geom. Funct. Anal. 14, 1182–1218

    Article  MathSciNet  Google Scholar 

  11. Carlen E.,Gangbo W. (2003) Constrained steepest descent in the 2–Wasserstein metric. Ann. of Math. 157(2): 807–846

    Article  MATH  MathSciNet  Google Scholar 

  12. Cullen M.J.P.: A Mathematical Theory of Large-Scale Atmospheric Flow. Imperial College Press, 259 pp, 2006

  13. Cullen M.J.P., Gangbo W. (2001) A variational approach for the 2-dimensional semi-geostrophic shallow water equations. Arch. Ration. Mech. Anal. 156, 241–273

    Article  MATH  MathSciNet  Google Scholar 

  14. Cullen M.J.P., Purser R.J. (1984) An extended Lagrangian theory of semigeostrophic frontogenesis. J. Atmospheric Sci. 41, 1477–1497

    Article  ADS  MathSciNet  Google Scholar 

  15. Cullen M.J.P., Purser R.J. (1989) Properties of the Lagrangian semigeostrophic equations. J. Atmospheric Sci 46, 2684–2697

    Article  ADS  MathSciNet  Google Scholar 

  16. Eliassen A.: The quasi-static equations of motion. Geofys. Publ. 17, (1948)

  17. Evans L.C.: Partial differential equations and Monge-Kantorovich mass transfer. Current Developments in Mathematics, 65–126, Int. Press, Boston, MA, 1999

  18. Gangbo W., McCann R.J. (1996) The geometry of optimal transportation. Acta Math. 177, 113–161

    Article  MATH  MathSciNet  Google Scholar 

  19. Hoskins B.J. (1975) The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmospheric Sci. 32, 233–242

    Article  ADS  Google Scholar 

  20. Loeper G. (2005) Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampere systems. Comm. Partial Differential Equations 30, 1141–1167

    Article  MATH  MathSciNet  Google Scholar 

  21. Lions P.-L., Perthame B. (1991) Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Pfaffelmoser K. (1992) Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differential Equations 95, 281–303

    Article  MATH  MathSciNet  Google Scholar 

  23. Roulstone I., Norbury J. (1994) A Hamiltonian structure with contact geometry for the semi-geostrophic equations. J. Fluid Mech. 272, 211–233

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Cullen.

Additional information

Communicated by Y. Brenier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullen, M., Gangbo, W. & Pisante, G. The Semigeostrophic Equations Discretized in Reference and Dual Variables. Arch Rational Mech Anal 185, 341–363 (2007). https://doi.org/10.1007/s00205-006-0040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0040-6

Keywords

Navigation