Skip to main content
Log in

The Influence of Surface Defects on Motion of Magnetic Vortices in Mesoscopic Type-II Superconductor with Randomly Distributed Pinning Centers

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present work, the influences of surface defects on the motion of magnetic vortices in a mesoscopic type-II superconductor with randomly distributed pinning centers are considered using the time-dependent Ginzburg-Landau equations. Two kinds of surface defects are located in the boundary: first, the pinning centers. and second, the geometric defects simultaneously with pinning centers. In the simulation, the magnetization curves, vorticity, and the density of superconducting electrons for both different contents of pinning centers and various geometric defects are analyzed. For the pinning centers as surface defects, the maximum magnetization values as a function of the contents exponentially decrease, and the field \(H_1\) where the first vortex penetrates and the field \(H_2\) where the complete transition from superconducting to a normal state in the system occurs is reduced. For the geometric defects as surface defects, the density of superconducting electrons and the magnetization curves depend on both size and form of them. In addition, a threshold on the size of geometric defects in which the motion of vortices and vorticity changes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data that support the findings of this study are included within this article.

References

  1. Du, Q.: Computers Math. Applic. 27, 119–133 (1994)

    Article  Google Scholar 

  2. Richardson, W.B., Pardhanani, A.L., Carey, G.F., Ardelea, A.: Int. J. Numer. Meth. Engng. 59, 1251–1272 (2004)

    Article  Google Scholar 

  3. Deo, P.S., Schweigert, V.A., Peeters, F.M.: Phys. Rev. Lett. 79, 4653 (1997)

    Article  CAS  ADS  Google Scholar 

  4. Sadovskyy, I.A., Koshelev, A.E., Glatz, A., Ortalan, V., Rupich, M.W., Leroux, M.: Phys. Rev. Applied 5, 014011 (2016)

    Article  ADS  Google Scholar 

  5. Sardella, E., Malvezzi, A.L., Lisboa-Filho, P.N., Ortiz, W.A.: Phys. Rev. B 74, 014512 (2006)

    Article  ADS  Google Scholar 

  6. Hernández, A.D., Baelus, B.J., Domínguez, D., Peeters, F.M.: Phys. Rev. B 71, 214524 (2005)

    Article  ADS  Google Scholar 

  7. Okimoto, D., Sardella, E., Zadorosny, R.: IEEE Trans. Appl. Supercond. 25(3):1-4 (2015). https://doi.org/10.1109/TASC.2014.2376175

  8. González, J.D., Joya, M.R., Barba-Ortega, J.: J. Low Temp. Phys. 190, 178–190 (2018)

    Article  ADS  Google Scholar 

  9. Cadorim, L.R., de C. Romaguera, A.R., de Oliveira, I.G., Gomes, R.R., Doria, M.M., Sardella, E.: Phys. Rev. B 103, 014504 (2021)

  10. Punyamoorty, V., Malusare, A., Sengupta, S., Pujari, S., Saha, K.: Phys. Rev. Research 3, 033144 (2021)

    Article  CAS  ADS  Google Scholar 

  11. Sørensen, M.P., Pedersen, N.F., Ögren, M.: Physica C 533, 40-43 (2017)

  12. Kimmel, G.J., Glatz, A., Vinokur, V.M., Sadovskyy, I.A.: Sci. Rep. 9, 211 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Cadorim, L.R., de Oliveira Junior, A., Sardella, E.: Scientific Reports 10, 18662 (2020)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  14. Sadovskyy, I.A., et al.: Adv. Mater. 28, 4593–4600 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. Sadovskyy, I.A., Wang, Y.L., Xiao, Z.L., Kwok, W.K., Glatz, A.: Phys. Rev. B 95, 075303 (2017)

    Article  ADS  Google Scholar 

  16. Blair, A.I., Hampshire, D.P.: Phys. Rev. Res. 4, 023123 (2012)

    Article  Google Scholar 

  17. Cadorim, L.R., de Toledo, L.V., Ortiz, W.A., Berger, J., Sardella, E.: Phys. Rev. B 107, 094515 (2023)

    Article  CAS  ADS  Google Scholar 

  18. Kimmel, G., Sadovskyy, I.A., Glatz, A.: Phys. Rev. E 96, 013318 (2017)

    Article  ADS  PubMed  Google Scholar 

  19. Berdiyorov, G.R., Milosevic, M.V., Peeters, F.M.: Europhys. Lett. 74(3) (2006). https://doi.org/10.1209/epl/i2006-10013-1

  20. Gonzále, J.D., Joya, M.R., Barba-Ortega, J.: Physics Letters A 382, 3103–3108 (2018)

    Article  ADS  Google Scholar 

  21. Yetis, H.: J. Low Temp. Phys. 166, 298–303 (2012)

    Article  CAS  ADS  Google Scholar 

  22. Sadovskyy, I.A., Koshelev, A.E., Phillips, C.L., Karpeyev, D.A., Glatz, A.: J. Comput. Phys. 294, 639 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  23. Li, B.: Calcolo 54(4), 1441–1480 (2017)

  24. Hong, Q., Ma, L., Xu, J.: J. Comput. Phys. 474, 111794 (2023)

    Article  Google Scholar 

  25. Fonseca, F.: J. Supercond. Nov. Magn. 26, 2273–2276 (2013)

    Article  CAS  Google Scholar 

  26. Zhang, J., Yan, G., Wang, M.: J. Comput. Phys. 306, 311–319 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  27. Vodolazov, D.Y.: Phys. Rev. B 62, 8691 (2000)

    Article  CAS  ADS  Google Scholar 

  28. Vodolazov, D.Y., Maksimo, I.L., Brandt, E.H.: Physica C 384, 211–226 (2003)

    Article  CAS  ADS  Google Scholar 

  29. Baelus, B.J., Kadowaki, K., Peeters, F.M.: Phys. Rev. B 71, 024514 (2005)

    Article  ADS  Google Scholar 

  30. Berdiyorov, G.R., Milošević, M.V., Peeters, F.M.: Phys. Rev. B 74, 174512 (2006)

    Article  ADS  Google Scholar 

  31. de Oliveira, I.G.: J. Supercond. Nov. Magn. 27, 1143–1152 (2014)

    Article  Google Scholar 

  32. Pack, A.R., Carlson, J., Wadsworth, S., Transtrum, M.K.: Phys. Rev. B 101, 144504 (2020)

    Article  CAS  ADS  Google Scholar 

  33. Wang, Q.Y., Xue, C., Dong, C., Zhou, Y.H.: Supercon. Sci. Technol. 35, 045004 (2022)

    CAS  ADS  Google Scholar 

  34. Lara, A., González-Ruano, C., Aliev, F.G.: Low Temp. Phys. 46, 316324 (2020)

  35. Prawitasari, Permono, R., Wisodo, H., Latifah, E., Hidayat, A.: IOP Conf. Series: Mater. Sci. Eng. 515, 012067 (2019)

  36. Alstrøm, T.S., Sørensen, M.P., Pedersen, N.F., Madsen, S.: Acta Appl. Math. 115, 63–74 (2011)

    Article  MathSciNet  Google Scholar 

  37. Ryu, Y.G., Mun, G.I., Choe, Y., Jang, M.S., Ri, H.M., Hong, S.: Physica C 611, 1354299 (2023)

    Article  CAS  ADS  Google Scholar 

  38. Oripov, B., Anlage, S.M.: Phys. Rev. E 101, 033306 (2023)

    Article  ADS  Google Scholar 

  39. de Oliveira, I.G.: J. Supercond. Nov. Magn. 31, 1287–1292 (2018)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of Democratic People’s Republic of Korea (KJGG20180205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Gwang Ryu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, Y.G., Om, J.H., Kim, J.H. et al. The Influence of Surface Defects on Motion of Magnetic Vortices in Mesoscopic Type-II Superconductor with Randomly Distributed Pinning Centers. J Supercond Nov Magn 37, 527–533 (2024). https://doi.org/10.1007/s10948-024-06694-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06694-w

Keywords

Navigation