Skip to main content
Log in

Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The time-dependent Ginzburg-Landau equation is solved numerically for type-II superconductors of complex geometry using the finite element method. The geometry has a marked influence on the magnetic vortex distribution and the vortex dynamics. We have observed generation of giant vortices at boundary defects, suppressing the superconducting state far into the superconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064 (1950)

    Google Scholar 

  2. Scott, A.C. (Ed.): Encyclopedia of Nonlinear Science. Routledge, New York (2005)

    MATH  Google Scholar 

  3. Gorkov, L.P., Eliashburg, G.M.: Generalization of the Ginzburg-Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. (JETP) 27, 328 (1968)

    Google Scholar 

  4. Gropp, W.D., Kaper, H.G., Leaf, G.K., Levine, D.M., Palumbo, M., Vinokur, V.M.: Numerical simulations of vortex dynamics in Type-II superconductors. J. Comput. Phys. 123, 254–266 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Du, Q.: Numerical approximations of the Ginzburg-Landau models for superconductivity. J. Math. Phys. 46, 095109 (2005)

    Article  MathSciNet  Google Scholar 

  6. Mu, M.: A linearized Crank-Nicolson-Galerkin method for the Ginzburg-Landau model. SIAM J. Sci. Comput. 18(4), 1028–1039 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gunter, D.O., Kaper, H.G., Leaf, G.K.: Implicit integration of the time-dependent Ginzburg-Landau equations of superconductivity. SIAM J. Sci. Comput. 23(6), 1943–1958 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chibotaru, L.F., Ceulemans, A.: Ginzburg-Landau description of confinement and quantization effects in mesoscopic superconductors. J. Math. Phys. 46, 095108 (2005)

    Article  MathSciNet  Google Scholar 

  9. Geim, A.K., Grigorieva, I.V., Dubonos, S.V., Lok, J.G.S., Maan, J.C., Filippov, A.E., Peeters, F.M., Deo, P.S.: Mesoscopic superconductors as ‘artificial atoms’ made from Cooper pairs. Physica B 249–251, 445–452 (1998)

    Article  Google Scholar 

  10. Berdiyorov, G.R., Cabral, L.R.E., Peeters, F.M.: Surface barrier for flux entry and exit in mesoscopic superconducting systems. J. Math. Phys. 46, 095105 (2005)

    Article  MathSciNet  Google Scholar 

  11. Madsen, S., Gaididei, Yu.B., Christiansen, P.L., Pedersen, N.F.: Domain walls and textured vortices in a two-component Ginzburg Landau model. Phys. Lett. A 344(4), 432–440 (2005)

    Article  MATH  Google Scholar 

  12. Baelus, B.J., Peeters, F.M.: The effect of surface defects on the vortex expulsion and penetration in mesoscopic superconducting disks. Physica C 408–410, 543–544 (2004)

    Article  Google Scholar 

  13. Peeters, F.M., Schweigert, V.A., Baelus, B.J.: Fractional and negative flux penetration in mesoscopic superconducting disks. Physica C 369, 158–164 (2002)

    Article  Google Scholar 

  14. Vodolazov, D.Y., Maksimov, I.L., Brandt, E.H.: Vortex entry conditions in type-II superconductors. Effect of surface defects. Physica C 384, 211–226 (2003)

    Article  Google Scholar 

  15. Alama, S., Bronsard, L.: Pinning effects and their breakdown for a Ginzburg Landau model with normal inclusions. J. Math. Phys. 46, 095102 (2005)

    Article  MathSciNet  Google Scholar 

  16. García, L.C., Giraldo, J.: Giant vortex state in mesoscopic superconductors. Phys. Stat. Sol. (c) 2, 3609–3612 (2005)

    Article  Google Scholar 

  17. Peeters, F.M., Schweigert, V.A., Baelus, B.J., Deo, P.S.: Vortex matter in mesoscopic superconducting disks and rings. Physica C 332, 255–262 (2000)

    Article  Google Scholar 

  18. Sardella, E., Malvezzi, A.L., Lisboa-Filho, P.N., Ortiz, W.A.: Temperature-dependent vortex motion in a square mesoscopic superconducting cylinder: Ginzburg-Landau calculations. Phys. Rev. B 74, 014512 (2006)

    Article  Google Scholar 

  19. McLaughlin, D.W., Scott, A.C.: Perturbation analysis of fluxon dynamics. Phys. Rev. A 18(4), 1652–1680 (1978)

    Article  Google Scholar 

  20. Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, New York (1996)

    Google Scholar 

  21. Du, Q.: Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity. Appl. Anal. 53(1), 2716–2723 (1994)

    Article  Google Scholar 

  22. Zimmerman, W.B.J.: Multiphysics Modelling with Finite Element Methods. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  23. COMSOL, Comsol Multiphysics Modeling Guide, Version 3.5a. www.comsol.com (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads Peter Sørensen.

Additional information

This paper is dedicated to the memory of Alwyn C. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alstrøm, T.S., Sørensen, M.P., Pedersen, N.F. et al. Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time Dependent Ginzburg-Landau Equation. Acta Appl Math 115, 63–74 (2011). https://doi.org/10.1007/s10440-010-9580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-010-9580-8

Keywords

Navigation