Skip to main content
Log in

Surface Effects on the Dynamic Behavior of Vortices in Type II Superconducting Strips with Periodic and Conformal Pinning Arrays

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using molecular dynamics techniques, we simulate the vortex behavior in a type II superconducting strip in the presence of triangular and two types of conformal pinning arrays, one with a pinning gradient perpendicular to the driving force (C1) and the other parallel (C2), at zero temperature. A transport force is applied in the infinite direction of the strip, and the magnetic field is increased until the rate between the density of vortices (n v ) and pinning (n p ) reaches n v /n p = 1.5. Our results show a monotonic increase, by steps, of the vortex density with the applied magnetic field. Besides, each pinning lattice presents a different vortex penetration delay. For the triangular pinning array, different than the case of infinite films, here the system exhibits only one pronounced depinning force peak at n v /n p = 1. However, the depinning force peak is present for only one value of field, in the range of fields where n v /n p = 1 is stable. For the case of conformal pinning arrays, in analogy to what is observed in infinite films, no commensurability depinning force peaks were found. In the present case, the C1 array is more efficient at low fields, all arrays are equivalent in the intermediate fields, and the C2 array is more efficient for high fields. We also show that for the C1 array at high fields, vortices depin following the conformal arches, from the edge to the center. For the C2 array, the depinning force is higher when compared to that of C1, because this particular conformal structure prevents the formation of easy vortex flow channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abrikosov, A.: On the magnetic properties of superconductors of the second group. Sov. Phys. JETP. 5, 1174–1182 (1957)

    Google Scholar 

  2. Tinkham, M.: Introduction to Superconductivity, Second Edition. Dover Publications, Mineola, NY (2004)

    Google Scholar 

  3. Pool, R.: Superconductivity: is the party over?. Science 244, 914–916 (1989). https://doi.org/10.1126/science.244.4907.914

    Article  ADS  Google Scholar 

  4. Pool, R.: Superconductivity: party time again. Science 246, 1243–1243 (1989). https://doi.org/10.1126/science.246.4935.1243

    Article  ADS  Google Scholar 

  5. Brandt, E.H.: Computer simulation of flux pinning in type-ii superconductors. Phys. Rev. Lett. 50, 1599–1602 (1983). https://doi.org/10.1103/PhysRevLett.50.1599

    Article  ADS  Google Scholar 

  6. Buzdin, A., Feinberg, D.: On the theory of electromagnetic pinning of vortices. Phys. C Supercond. 235, 2755–2756 (1994). https://doi.org/10.1016/0921-4534(94)92598-4

    Article  ADS  Google Scholar 

  7. Matsumoto, K., Mele, P.: Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond. Sci. Technol. 23, 014001 (2010). https://doi.org/10.1088/0953-2048/23/1/014001

    Article  ADS  Google Scholar 

  8. Morgan, D.J., Ketterson, J.B.: Asymmetric flux pinning in a regular array of magnetic dipoles. Phys. Rev. Lett. 80, 3614–3617 (1998). https://doi.org/10.1103/PhysRevLett.80.3614

    Article  ADS  Google Scholar 

  9. Reichhardt, C., Zimányi, G.T., Grønbech-Jensen, N.: Complex dynamical flow phases and pinning in superconductors with rectangular pinning arrays. Phys. Rev. B. 64, 014501 (2001). https://doi.org/10.1103/PhysRevB.64.014501

    Article  ADS  Google Scholar 

  10. Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994). https://doi.org/10.1103/RevModPhys.66.1125

    Article  ADS  Google Scholar 

  11. Koshelev, A.E., Vinokur, V.M.: Dynamic melting of the vortex lattice. Phys. Rev. Lett. 73, 3580–3583 (1994). https://doi.org/10.1103/PhysRevLett.73.3580

    Article  ADS  Google Scholar 

  12. Grigorenko, A.N., Bending, S.J., Van Bael, M.J., Lange, M., Moshchalkov, V.V., Fangohr, H., de Groot, P.A.J.: Symmetry locking and commensurate vortex domain formation in periodic pinning arrays. Phys. Rev. Lett. 90, 237001 (2003). https://doi.org/10.1103/PhysRevLett.90.237001

    Article  ADS  Google Scholar 

  13. Martín, J.I., Vélez, M., Hoffmann, A., Schuller, I.K., Vicent, J.L.: Temperature dependence and mechanisms of vortex pinning by periodic arrays of Ni dots in Nb films. Phys. Rev. B. 62, 9110–9116 (2000). https://doi.org/10.1103/PhysRevB.62.9110

    Article  ADS  Google Scholar 

  14. Moshchalkov, V.V., Baert, M., Metlushko, V.V., Rosseel, E., Van Bael, M.J., Temst, K., Bruynseraede, Y., Jonckheere, R.: Pinning by an antidot lattice: the problem of the optimum antidot size. Phys. Rev. B. 57, 3615–3622 (1998). https://doi.org/10.1103/PhysRevB.57.3615

    Article  ADS  Google Scholar 

  15. Reichhardt, C., Olson, C.J., Nori, F.: Dynamic phases of vortices in superconductors with periodic pinning. Phys. Rev. Lett. 78, 2648–2651 (1997). https://doi.org/10.1103/PhysRevLett.78.2648

    Article  ADS  Google Scholar 

  16. Ren, Q.-B., Luo, M.-B.: Dynamics of two-dimensional vortex system in a strong square pinning array at the second matching field. Phys. Lett. A. 377, 1966–1969 (2013). https://doi.org/10.1016/j.physleta.2013.05.045

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cuadra-Solís, P.-J., García-Santiago, A., Hernandez, J.M., Tejada, J., Vanacken, J., Moshchalkov, V.V.: Observation of commensurability effects in a patterned thin superconducting Pb film using microwave reflection spectrometry. Phys. Rev. B. 89, 054517 (2014). https://doi.org/10.1103/PhysRevB.89.054517

    Article  ADS  Google Scholar 

  18. Yetis, H.: Transport properties of the multiple vortices in superconductors with square pinning arrays. Eur. Phys. J. B. 88. https://doi.org/10.1140/epjb/e2015-50474-2 (2015)

  19. Reichhardt, C., Nori, F.: Phase locking, devil’s staircases, Farey trees, and Arnold tongues in driven vortex lattices with periodic pinning. Phys. Rev. Lett. 82, 414–417 (1999). https://doi.org/10.1103/PhysRevLett.82.414

    Article  ADS  Google Scholar 

  20. Harada, K., Kamimura, O., Kasai, H., Matsuda, T., Tonomura, A., Moshchalkov, V.V.: Direct observation of vortex dynamics in superconducting films with regular arrays of defects. Science 274, 1167–1170 (1996). https://doi.org/10.1126/science.274.5290.1167

    Article  ADS  Google Scholar 

  21. Field, S.B., James, S.S., Barentine, J., Metlushko, V., Crabtree, G., Shtrikman, H., Ilic, B., Brueck, S.R.J.: Vortex configurations, matching, and domain structure in large arrays of artificial pinning centers. Phys. Rev. Lett. 88, 067003 (2002). https://doi.org/10.1103/PhysRevLett.88.067003

    Article  ADS  Google Scholar 

  22. Zhu, B.Y., Liu, M., Xing, D.Y., Zhao, B.R., Zhao, Z.X.: Moving vortex crystal induced by commensurability effects in a superconductor with periodic pinning array. Phys. C Supercond. 361, 107–113 (2001). https://doi.org/10.1016/S0921-4534(01)00295-7

    Article  ADS  Google Scholar 

  23. Chen, Q.H., Shi, D.Q., Li, W.X., Zhu, B.Y., Moshchalkov, V.V., Dou, S.X.: Configuration-induced vortex motion in type-II superconducting films with periodic magnetic dot arrays. Supercond. Sci. Technol. 27, 065004 (2014). https://doi.org/10.1088/0953-2048/27/6/065004

    Article  ADS  Google Scholar 

  24. Gutierrez, J., Silhanek, A.V., Van de Vondel, J., Gillijns, W., Moshchalkov, V.V.: Transition from turbulent to nearly laminar vortex flow in superconductors with periodic pinning. Phys. Rev. B. 80, 140514 (2009). https://doi.org/10.1103/PhysRevB.80.140514

    Article  ADS  Google Scholar 

  25. Hoffmann, A., Prieto, P., Schuller, I.K.: Periodic vortex pinning with magnetic and nonmagnetic dots: the influence of size. Phys. Rev. B. 61, 6958–6965 (2000). https://doi.org/10.1103/PhysRevB.61.6958

    Article  ADS  Google Scholar 

  26. Reichhardt, C., Grønbech-Jensen, N.: Collective multivortex states in periodic arrays of traps. Phys. Rev. Lett. 85, 2372–2375 (2000). https://doi.org/10.1103/PhysRevLett.85.2372

    Article  ADS  Google Scholar 

  27. Cuppens, J., Ataklti, G.W., Gillijns, W., de Vondel, J.V., Moshchalkov, V.V., Silhanek, A.V.: Vortex dynamics in a superconducting film with a Kagome and a honeycomb pinning landscape. J. Supercond. Nov. Magn. 24, 7–11 (2011). https://doi.org/10.1007/s10948-010-0893-7

    Article  Google Scholar 

  28. Xue, C., Ge, J.-Y., He, A., Zharinov, V.S., Moshchalkov, V.V., Zhou, Y.H., Silhanek, A.V., Van de Vondel, J.: Mapping degenerate vortex states in a Kagome lattice of elongated antidots via scanning Hall probe microscopy. Phys. Rev. B. 96, 024510 (2017). https://doi.org/10.1103/PhysRevB.96.024510

    Article  ADS  Google Scholar 

  29. Reichhardt, C., Reichhardt, C.J.O.: Vortex molecular crystal and vortex plastic crystal states in honeycomb and Kagom’e pinning arrays. Phys. Rev. B. 76, 064523 (2007). https://doi.org/10.1103/PhysRevB.76.064523

    Article  ADS  Google Scholar 

  30. Cao, R., Horng, L., Wu, T.C., Wu, J.C., Yang, T.J.: Temperature dependent pinning phenomenon in superconducting Nb films with triangular and honeycomb pinning arrays. J. Phys. Condens. Matter. 21, 075705 (2009). https://doi.org/10.1088/0953-8984/21/7/075705

    Article  ADS  Google Scholar 

  31. Cao, R., Wu, T.C., Kang, P.C., Wu, J.C., Yang, T.J., Horng, L.: Anisotropic pinning in Nb thin films with triangular pinning arrays. Solid State Commun. 143, 171–175 (2007). https://doi.org/10.1016/j.ssc.2007.04.037

    Article  ADS  Google Scholar 

  32. Laguna, M.F., Balseiro, C.A., Domínguez, D., Nori, F.: Vortex structure and dynamics in kagom’e and triangular pinning potentials. Phys. Rev. B. 64, 104505 (2001). https://doi.org/10.1103/PhysRevB.64.104505

    Article  ADS  Google Scholar 

  33. Vizarim, N.P., Carlone, M., Verga, L.G., Venegas, P.A.: Critical forces at fractional matching fields in superconducting thin films with triangular pinning lattice. Mater. Res. 20, 899–903 (2017). https://doi.org/10.1590/1980-5373-mr-2016-0696

    Article  Google Scholar 

  34. Sadovskyy, I.A., Wang, Y.L., Xiao, Z.-L., Kwok, W.-K., Glatz, A.: Effect of hexagonal patterned arrays and defect geometry on the critical current of superconducting films. Phys. Rev. B. 95, 075303 (2017). https://doi.org/10.1103/PhysRevB.95.075303

    Article  ADS  Google Scholar 

  35. Reichhardt, C., Grønbech-Jensen, N.: Critical currents and vortex states at fractional matching fields in superconductors with periodic pinning. Phys. Rev. B. 63, 054510 (2001). https://doi.org/10.1103/PhysRevB.63.054510

    Article  ADS  Google Scholar 

  36. Ooi, S., Mochiku, T., Hirata, K.: Fractional matching effect in single-crystal films of with antidot lattice. Phys. C Supercond. 469, 1113–1115 (2009). https://doi.org/10.1016/j.physc.2009.05.206

    Article  ADS  Google Scholar 

  37. Vizarim, N.P., Carlone, M., Verga, L.G., Venegas, P.A.: Commensurability effects in the critical forces of a superconducting film with kagomé pinning array at submatching fields. Eur. Phys. J. B. 90, 169 (2017). https://doi.org/10.1140/epjb/e2017-80260-y

    Article  ADS  Google Scholar 

  38. Reichhardt, C., Olson Reichhardt, C.J.: Transport anisotropy as a probe of the interstitial vortex state in superconductors with artificial pinning arrays. Phys. Rev. B. 79, 134501 (2009). https://doi.org/10.1103/PhysRevB.79.134501

    Article  ADS  Google Scholar 

  39. Berdiyorov, G.R., Milošević, M.V., Peeters, F.M.: Superconducting films with antidot arrays—novel behavior of the critical current. EPL Europhys. Lett. 74, 493 (2006). https://doi.org/10.1209/epl/i2006-10013-1

    Article  ADS  Google Scholar 

  40. Berdiyorov, G.R., Milošević, M.V., Peeters, F.M.: Vortex configurations and critical parameters in superconducting thin films containing antidot arrays: nonlinear Ginzburg-Landau theory. Phys. Rev. B. 74, 174512 (2006). https://doi.org/10.1103/PhysRevB.74.174512

    Article  ADS  Google Scholar 

  41. Bothner, D., Seidl, R., Misko, V.R., Kleiner, R., Koelle, D., Kemmler, M.: Unusual commensurability effects in quasiperiodic pinning arrays induced by local inhomogeneities of the pinning site density. Supercond. Sci. Technol. 27, 065002 (2014). https://doi.org/10.1088/0953-2048/27/6/065002

    Article  ADS  Google Scholar 

  42. Kemmler, M., Gürlich, C., Sterck, A., Pöhler, H., Neuhaus, M., Siegel, M., Kleiner, R., Koelle, D.: Commensurability effects in superconducting Nb films with quasiperiodic pinning arrays. Phys. Rev. Lett. 97, 147003 (2006). https://doi.org/10.1103/PhysRevLett.97.147003

    Article  ADS  Google Scholar 

  43. Misko, V.R., Savel’ev, S., Nori, F.: Critical currents in superconductors with quasiperiodic pinning arrays: one-dimensional chains and two-dimensional Penrose lattices. Phys. Rev. B. 74, 024522 (2006). https://doi.org/10.1103/PhysRevB.74.024522

    Article  ADS  Google Scholar 

  44. Misko, V., Savel’ev, S., Nori, F.: Critical currents in quasiperiodic pinning arrays: chains and penrose lattices. Phys. Rev. Lett. 95, 177007 (2005). https://doi.org/10.1103/PhysRevLett.95.177007

    Article  ADS  Google Scholar 

  45. Misko, V.R., Bothner, D., Kemmler, M., Kleiner, R., Koelle, D., Peeters, F.M., Nori, F.: Enhancing the critical current in quasiperiodic pinning arrays below and above the matching magnetic flux. Phys. Rev. B. 82, 184512 (2010). https://doi.org/10.1103/PhysRevB.82.184512

    Article  ADS  Google Scholar 

  46. Ray, D., Reichhardt, C., Reichhardt, C.J.O.: Vortex states in Archimedean tiling pinning arrays. Supercond. Sci. Technol. 27, 075006 (2014). https://doi.org/10.1088/0953-2048/27/7/075006

    Article  ADS  Google Scholar 

  47. Misko, V.R., Nori, F.: Magnetic flux pinning in superconductors with hyperbolic-tessellation arrays of pinning sites. Phys. Rev. B. 85, 184506 (2012). https://doi.org/10.1103/PhysRevB.85.184506

    Article  ADS  Google Scholar 

  48. Silhanek, A.V., Gillijns, W., Moshchalkov, V.V., Zhu, B.Y., Moonens, J., Leunissen, L.H.A.: Enhanced pinning and proliferation of matching effects in a superconducting film with a Penrose array of magnetic dots. Appl. Phys. Lett. 89, 152507 (2006). https://doi.org/10.1063/1.2361172

    Article  ADS  Google Scholar 

  49. Olson, C.J., Reichhardt, C.: Transverse depinning in strongly driven vortex lattices with disorder. Phys. Rev. B. 61, R3811–R3814 (2000). https://doi.org/10.1103/PhysRevB.61.R3811

    Article  ADS  Google Scholar 

  50. Olson, C.J., Reichhardt, C., Bhattacharya, S.: Critical depinning force and vortex lattice order in disordered superconductors. Phys. Rev. B. 64, 024518 (2001). https://doi.org/10.1103/PhysRevB.64.024518

    Article  ADS  Google Scholar 

  51. Olson, C.J., Reichhardt, C., Vinokur, V.M.: Hysteretic depinning and dynamical melting for magnetically interacting vortices in disordered layered superconductors. Phys. Rev. B. 64, 140502 (2001). https://doi.org/10.1103/PhysRevB.64.140502

    Article  ADS  Google Scholar 

  52. Ryu, S., Hellerqvist, M., Doniach, S., Kapitulnik, A., Stroud, D.: Dynamical phase transition in a driven disordered vortex lattice. Phys. Rev. Lett. 77, 5114–5117 (1996). https://doi.org/10.1103/PhysRevLett.77.5114

    Article  ADS  Google Scholar 

  53. Kolton, A.B., Exartier, R., Cugliandolo, L.F., Domínguez, D., Grønbech-Jensen, N.: Effective temperature in driven vortex lattices with random pinning. Phys. Rev. Lett. 89, 227001 (2002). https://doi.org/10.1103/PhysRevLett.89.227001

    Article  ADS  Google Scholar 

  54. Kolton, A.B., Domínguez, D., Grønbech-Jensen, N.: Hall Noise and transverse freezing in driven vortex lattices. Phys. Rev. Lett. 83, 3061–3064 (1999). https://doi.org/10.1103/PhysRevLett.83.3061

    Article  ADS  Google Scholar 

  55. Wu, T.C., Kang, P.C., Horng, L., Wu, J.C., Yang, T.J.: Anisotropic pinning effect on a Nb thin film with triangular arrays of pinning sites. J. Appl. Phys. 95, 6696–6698 (2004). https://doi.org/10.1063/1.1690971

    Article  ADS  Google Scholar 

  56. Ray, D., Olson Reichhardt, C.J., Jankó, B., Reichhardt, C.: Strongly enhanced pinning of magnetic vortices in type-II superconductors by conformal crystal arrays. Phys. Rev. Lett. 110, 267001 (2013). https://doi.org/10.1103/PhysRevLett.110.267001

    Article  ADS  Google Scholar 

  57. Ray, D., Reichhardt, C., Reichhardt, C.J.O.: Pinning, ordering, and dynamics of vortices in conformal crystal and gradient pinning arrays. Phys. Rev. B. 90, 094502 (2014). https://doi.org/10.1103/PhysRevB.90.094502

    Article  ADS  Google Scholar 

  58. Olson Reichhardt, C.J., Wang, Y.L., Xiao, Z.L., Kwok, W.K., Ray, D., Reichhardt, C., Jankó, B.: Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays. Phys. C Supercond. Its Appl. 533, 148–153 (2017). https://doi.org/10.1016/j.physc.2016.05.024

    Article  ADS  Google Scholar 

  59. Ray, D., Reichhardt, C., Olson Reichhardt, C.J., Jankó, B.: Vortex transport and pinning in conformal pinning arrays. Phys. C Supercond. Its Appl. 503, 123–127 (2014). https://doi.org/10.1016/j.physc.2014.04.038

    Article  ADS  Google Scholar 

  60. Reichhardt, C., Reichhardt, C.J.O.: Transverse ac-driven and geometric ratchet effects for vortices in conformal crystal pinning arrays. Phys. Rev. B. 93, 064508 (2016). https://doi.org/10.1103/PhysRevB.93.064508

    Article  ADS  Google Scholar 

  61. Jing, Z., Yong, H., Zhou, Y.: Numerical simulation on the flux avalanche behaviors of microstructured superconducting thin films. J. Appl. Phys. 121, 023902 (2017). https://doi.org/10.1063/1.4974000

    Article  ADS  Google Scholar 

  62. Guénon, S., Rosen, Y.J., Basaran, A.C., Schuller, I.K.: Highly effective superconducting vortex pinning in conformal crystals. Appl. Phys. Lett. 102, 252602 (2013). https://doi.org/10.1063/1.4811413

    Article  ADS  Google Scholar 

  63. Wang, Y.L., Latimer, M.L., Xiao, Z.L., Divan, R., Ocola, L.E., Crabtree, G.W., Kwok, W.K.: Enhancing the critical current of a superconducting film in a wide range of magnetic fields with a conformal array of nanoscale holes. Phys. Rev. B. 87, 220501 (2013). https://doi.org/10.1103/PhysRevB.87.220501

    Article  ADS  Google Scholar 

  64. Barba-Ortega, J., Sardella, E., Aguiar, J.A.: Superconducting boundary conditions for mesoscopic circular samples. Supercond. Sci. Technol. 24, 015001 (2011). https://doi.org/10.1088/0953-2048/24/1/015001

    Article  ADS  Google Scholar 

  65. Barba-Ortega, J., Sardella, E., Albino Aguiar, J., Peeters, F.M.: Non-conventional vortex configurations in a mesoscopic flat disk. Phys. C Supercond. 487, 47–55 (2013). https://doi.org/10.1016/j.physc.2013.01.021

    Article  ADS  Google Scholar 

  66. Barba-Ortega, J., Sardella, E., Albino Aguiar, J.: Temperature-dependent vortex matter in a superconducting mesoscopic circular sector. Phys. C Supercond. 470, 1964–1967 (2010). https://doi.org/10.1016/j.physc.2010.08.008

    Article  ADS  Google Scholar 

  67. Lisboa-Filho, P.N., Malvezzi, A.L., Sardella, E.: Minimum size for the occurrence of vortex matter in a square mesoscopic superconductor. Phys. B Condens. Matter. 403, 1494–1496 (2008). https://doi.org/10.1016/j.physb.2007.10.247

    Article  ADS  Google Scholar 

  68. Mel’nikov, A.S., Nefedov, I.M., Ryzhov, D.A., Shereshevskii, I.A., Vinokur, V.M., Vysheslavtsev, P.P.: Vortex states and magnetization curve of square mesoscopic superconductors. Phys. Rev. B. 65, 140503 (2002). https://doi.org/10.1103/PhysRevB.65.140503

    Article  ADS  Google Scholar 

  69. Sardella, E., Brandt, E.H.: Vortices in a mesoscopic superconducting disk of variable thickness. Supercond. Sci. Technol. 23, 025015 (2010). https://doi.org/10.1088/0953-2048/23/2/025015

    Article  ADS  Google Scholar 

  70. Sardella, E., Malvezzi, A.L., Lisboa-Filho, P.N., Ortiz, W.A.: Temperature-dependent vortex motion in a square mesoscopic superconducting cylinder: Ginzburg-landau calculations. Phys. Rev. B. 74, 014512 (2006). https://doi.org/10.1103/PhysRevB.74.014512

    Article  ADS  Google Scholar 

  71. Hernández, A.D., Baelus, B.J., Domínguez, D., Peeters, F.M.: Effects of thermal fluctuations on the magnetic behavior of mesoscopic superconductors. Phys. Rev. B. 71, 214524 (2005). https://doi.org/10.1103/PhysRevB.71.214524

    Article  ADS  Google Scholar 

  72. Berdiyorov, G., Harrabi, K., Maneval, J.P., Peeters, F.M.: Effect of pinning on the response of superconducting strips to an external pulsed current. Supercond. Sci. Technol. 28, 025004 (2015). https://doi.org/10.1088/0953-2048/28/2/025004

    Article  ADS  Google Scholar 

  73. Berdiyorov, G.R., Chao, X.H., Peeters, F.M., Wang, H.B., Moshchalkov, V.V., Zhu, B.Y.: Magnetoresistance oscillations in superconducting strips: a Ginzburg-Landau study. Phys. Rev. B. 86, 224504 (2012). https://doi.org/10.1103/PhysRevB.86.224504

    Article  ADS  Google Scholar 

  74. Berdiyorov, G.R., Elmurodov, A.K., Peeters, F.M., Vodolazov, D.Y.: Finite-size effect on the resistive state in a mesoscopic type-II superconducting stripe. Phys. Rev. B. 79, 174506 (2009). https://doi.org/10.1103/PhysRevB.79.174506

    Article  ADS  Google Scholar 

  75. Berdiyorov, G., Harrabi, K., Oktasendra, F., Gasmi, K., Mansour, A.I., Maneval, J.P., Peeters, F.M.: Dynamics of current-driven phase-slip centers in superconducting strips. Phys. Rev. B. 90, 054506 (2014). https://doi.org/10.1103/PhysRevB.90.054506

    Article  ADS  Google Scholar 

  76. Carneiro, G.: Equilibrium vortex-line configurations and critical currents in thin films under a parallel field. Phys. Rev. B. 57, 6077–6083 (1998). https://doi.org/10.1103/PhysRevB.57.6077

    Article  ADS  Google Scholar 

  77. Reis, J.D., Venegas, P.A., Mello, D.F., Cabrera, G.G.: Surface effects on moving vortices in superconducting stripes. Phys. C Supercond. 454, 15–19 (2007). https://doi.org/10.1016/j.physc.2007.01.002

    Article  ADS  Google Scholar 

  78. de Souza Silva, C.C., Cabral, L.R.E., Aguiar, J.A.: Flux penetration, matching effect, and hysteresis in homogeneous superconducting films. Phys. Rev. B. 63, 134526 (2001). https://doi.org/10.1103/PhysRevB.63.134526

    Article  ADS  Google Scholar 

  79. de Souza Silva, C.C., Cabral, L.R.E., Albino Aguiar, J.: Vortex configurations and metastability in mesoscopic superconductors. Phys. C Supercond. 404, 11–17 (2004). https://doi.org/10.1016/j.physc.2003.11.060

    Article  ADS  Google Scholar 

  80. Venegas, P.A.: Size effects in the magnetization of a superconducting wire. J. Appl. Phys. 85, 6049 (1999). https://doi.org/10.1063/1.369078

    Article  ADS  Google Scholar 

  81. Bean, C.P., Livingston, J.D.: Surface barrier in type-II superconductors. Phys. Rev. Lett. 12, 14–16 (1964). https://doi.org/10.1103/PhysRevLett.12.14

    Article  ADS  Google Scholar 

  82. de Souza Silva, C.C., Albino Aguiar, J.: Irreversible matching effects in homogeneous and layered superconducting films. Phys. C Supercond. 354, 232–236 (2001). https://doi.org/10.1016/S0921-4534(01)00070-3

    Article  ADS  Google Scholar 

  83. Benkraouda, M., Clem, J.R.: Magnetic hysteresis from the geometrical barrier in type-II superconducting strips. Phys. Rev. B. 53, 5716–5726 (1996). https://doi.org/10.1103/PhysRevB.53.5716

    Article  ADS  Google Scholar 

  84. Bronson, E., Gelfand, M.P., Field, S.B.: Equilibrium configurations of Pearl vortices in narrow strips. Phys. Rev. B. 73, 144501 (2006). https://doi.org/10.1103/PhysRevB.73.144501

    Article  ADS  Google Scholar 

  85. Kramer, R.B.G., Ataklti, G.W., Moshchalkov, V.V., Silhanek, A.V.: Direct visualization of the Campbell regime in superconducting stripes. Phys. Rev. B. 81, 144508 (2010). https://doi.org/10.1103/PhysRevB.81.144508

    Article  ADS  Google Scholar 

  86. Silva, C.C., de, S., Raes, B., Brisbois, J., Cabral, L.R.E., Silhanek, A.V., Van de Vondel, J., Moshchalkov, V.V.: Probing the low-frequency vortex dynamics in a nanostructured superconducting strip. Phys. Rev. B. 94, 024516 (2016). https://doi.org/10.1103/PhysRevB.94.024516

  87. Sánchez-Lotero, P., Domínguez, D., Aguiar, J.A.: Flux flow in current driven mesoscopic superconductors: size effects. Eur. Phys. J. B. 89, 141 (2016). https://doi.org/10.1140/epjb/e2016-70047-1

    Article  ADS  Google Scholar 

  88. Kuit, K.H., Kirtley, J.R., van der Veur, W., Molenaar, C.G., Roesthuis, F.J.G., Troeman, A.G.P., Clem, J.R., Hilgenkamp, H., Rogalla, H., Flokstra, J.: Vortex trapping and expulsion in thin-film YBa2Cu3 O 7−δ strips. Phys. Rev. B. 77, 134504 (2008). https://doi.org/10.1103/PhysRevB.77.134504

    Article  ADS  Google Scholar 

  89. Palacios, J.J.: Vortex lattices in strong type-II superconducting two-dimensional strips. Phys. Rev. B. 57, 10873–10876 (1998). https://doi.org/10.1103/PhysRevB.57.10873

    Article  ADS  Google Scholar 

  90. Barba, J.J., Aguiar, J.A.: Bi-dimensional chain-like vortex structure in a mesoscopic superconductor. J. Phys. Conf. Ser. 150, 052015 (2009). https://doi.org/10.1088/1742-6596/150/5/052015

    Article  Google Scholar 

  91. Denisov, D.V., Shantsev, D.V., Galperin, Y.M., Choi, E.-M., Lee, H.-S., Lee, S.-I., Bobyl, A.V., Goa, P.E., Olsen, A.A.F., Johansen, T.H.: Onset of dendritic flux avalanches in superconducting films. Phys. Rev. Lett. 97, 077002 (2006). https://doi.org/10.1103/PhysRevLett.97.077002

    Article  ADS  Google Scholar 

  92. Mints, R.G., Rakhmanov, A.L.: Critical state stability in type-II superconductors and superconducting-normal-metal composites. Rev. Mod. Phys. 53, 551–592 (1981). https://doi.org/10.1103/RevModPhys.53.551

    Article  ADS  Google Scholar 

  93. Bardeen, J., Stephen, M.J.: Theory of the motion of vortices in superconductors. Phys. Rev. 140, A1197–A1207 (1965). https://doi.org/10.1103/PhysRev.140.A1197

    Article  ADS  Google Scholar 

  94. Tsallis, C., Stariolo, D.A.: Generalized simulated annealing. Phys. Stat. Mech. Its Appl. 233, 395–406 (1996). https://doi.org/10.1016/S0378-4371(96)00271-3

    Article  Google Scholar 

  95. Stan, G., Field, S.B., Martinis, J.M.: Critical field for complete vortex expulsion from narrow superconducting strips. Phys. Rev. Lett. 92, 097003 (2004). https://doi.org/10.1103/PhysRevLett.92.097003

    Article  ADS  Google Scholar 

Download references

Funding

N.P.V. and M.C. acknowledge Capes-Brazil for financial support. L.G.V. acknowledges the support from the Brazilian Government’s Science Without Borders Programme (Grant: 206419/2014-7). This research was supported by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Vizarim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vizarim, N.P., Carlone, M., Verga, L.G. et al. Surface Effects on the Dynamic Behavior of Vortices in Type II Superconducting Strips with Periodic and Conformal Pinning Arrays. J Supercond Nov Magn 31, 1981–1992 (2018). https://doi.org/10.1007/s10948-017-4452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4452-3

Keywords

Navigation