Skip to main content
Log in

Co-existence of Ferroelectric and Ferromagnetic Properties of Bi+3 Substituted M-type Barium Hexaferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Co-existence of ferroelectric and ferromagnetic nature in bismuth substituted M-type barium hexaferrites has been investigated in this current project. A series of samples with formula BaBixFe(12-x) (where x varies from 0.2 to 1.2 with step size of 0.2) have been prepared by conventional powder metallurgy route. The structural, functional group analysis, surface morphology, optical, dielectric, ferroelectric, and ferromagnetic properties of samples are characterized using X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), UV-visible spectroscopy (UV-Vis), LCR meter, ZT-IA, and vibrating sample magnetometer (VSM) respectively. XRD and FTIR confirm the single phase of hexagonal structure of bismuth doped M-type barium hexaferrite. The platelet like structures is observed on the surface of the samples. The optical band gap energy decreases due to the formation of intermediate states between the valence and conduction bands as the concentration of Bi ions increases. The variation in dielectric constant and ac conductivity depends upon the frequency of the applied field as well as the composition of the samples. P-E loop shows clear ferroelectric behavior. The maximum saturation polarization of 5.42 μC/cm2 is observed. The presence of FeO6 octahedron at three (12 k, 2a, and 4f2) crystallographic sites in the hexagonal unit cell is the origin of induced polarization. Magnetic properties reveal the strong ferromagnetism of bismuth doped M-type barium hexaferrite at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Mariño-Castellanos, P.A., Anglada-Rivera, J., Cruz-Fuentes, A., Lora-Serrano, R.: Magnetic and microstructural properties of the Ti4+−doped barium hexaferrite. J Magn Magn Mater. 280, 214–220 (2004)

    Article  ADS  Google Scholar 

  2. Mariño-Castellanos, P.A., Moreno-Borges, A.C., Orozco-Melgar, G., García, J.A., Govea-Alcaide, E.: Structural and magnetic study of the Ti4+−doped barium hexaferrite ceramic samples: theoretical and experimental results. Phys B Condens Matter. 406, 3130–3136 (2011)

    Article  ADS  Google Scholar 

  3. Bsoul, I., Mahmood, S.H.: Magnetic and structural properties of BaFe12− xGaxO19 nanoparticles. J Alloys Compd. 489, 110–114 (2010)

    Article  Google Scholar 

  4. Du, Y., Gao, H., Liu, X., Wang, J., Xu, P., Han, X.: Solvent-free synthesis of hexagonal barium ferrite (BaFe 12 O 19) particles. J Mater Sci. 45, 2442–2448 (2010)

    Article  ADS  Google Scholar 

  5. Turchenko, V.A., Trukhanov, A.V., Bobrikov, I.A., Trukhanov, S.V., Balagurov, A.M.: Study of the crystalline and magnetic structures of BaFe 11.4 Al 0.6 O 19 in a wide temperature range. J Surf Invest-X-Ray+. 9, 17–23 (2015)

  6. Schwanitz-Schüller, U., Müller-Buschbaum, H.: Neue Lanthanoidmagnetoplumbite: LaFe 11 A10 19, SmFe 4 Al 8 O 19 und Eu 0, 83 Fe 2 Al 10 O 19. Monatsh Chem Chem Mon. 113, 1079–1085 (1982)

    Article  Google Scholar 

  7. Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S., Cheong, S.W.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature. 429, 392–395 (2004)

  8. Smit, J., Wijn, H.P.J.: Ferrites. Hume Press, Cleaver (1959)

    Google Scholar 

  9. Schiffer, P., Ramirez, A.P., Bao, W., Cheong, S.W.: Low temperature magnetoresistance and the magnetic phase diagram of La 1− x Ca x MnO 3. Phys Rev Lett. 75, 3336 (1995)

    Article  ADS  Google Scholar 

  10. Nipan, G.D., Ketsko, V.A., Stognij, A.I., Trukhanov, A.V., Kol’tsova, T.N., Kop’eva, M.A., ... & Kuznetsov, N.T.: Properties of Mg (Fe 1− x Ga x) 2 O 4+ δ solid solutions in stable and metastable states. Inorg Mater. 46, 429–433 (2010)

  11. Trukhanov, S.V., Trukhanov, A.V., Stepin, S.G., Szymczak, H., Botez, C.E.: Effect of the size factor on the magnetic properties of manganite La 0.50 Ba 0.50 MnO 3. Phys Solid State. 50, 886–893 (2008)

    Article  ADS  Google Scholar 

  12. Trukhanov, A., Panina, L., Trukhanov, S., Turchenko, V., Salem, M.: Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin Phys B. 25, 016102 (2015)

    Article  Google Scholar 

  13. Turchenko, V., Trukhanov, A., Trukhanov, S., Bobrikov, I., Balagurov, A.M.: Features of crystal and magnetic structures of solid solutions BaFe 12-x D x O 19 (D= Al 3+, In 3+; x= 0.1) in a wide temperature range. Eur Phys J Plus. 131, 82 (2016)

    Article  Google Scholar 

  14. Trukhanov, S.V., Trukhanov, A.V., Kostishin, V.G.E., Panina, L.V., Kazakevich, I.Y.S., Turchenko, V.A., Kochervinskii, V.V.: Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe _12-x Al _x O _19 (x\leq1.2) at room temperature. Pis'ma Zh Eksp Teor Fiz. 103, 106–112 (2016)

  15. Trukhanov, S.V., Trukhanov, A.V., Kostishyn, V.G., Panina, L.V., Turchenko, V.A., Kazakevich, I.S., ... & Balagurov, A.M.: Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J Magn Magn Mater. 426, 554–562 (2017)

  16. Trukhanov, S.V., Trukhanov, A.V., Botez, C.E., Adair, A.H., Szymczak, H., Szymczak, R.: Phase separation and size effects in Pr0. 70Ba0. 30MnO3+ δ perovskite manganites. J Phys Condens Matter. 19, 266214 (2007)

    Article  ADS  Google Scholar 

  17. Trukhanov, S.V., Trukhanov, A.V., Vasil’ev, A.N., Maignan, A., Szymczak, H.: Critical behavior of La 0.825 Sr 0.175 MnO 2.912 anion-deficient manganite in the magnetic phase transition region. JETP Lett. 85, 507–512 (2007)

    Article  Google Scholar 

  18. Trukhanov, A.V., Turchenko, V.O., Bobrikov, I.A., Trukhanov, S.V., Kazakevich, I.S., Balagurov, A.M.: Crystal structure and magnetic properties of the BaFe12− xAlxO19 (x= 0.1–1.2) solid solutions. J Magn Magn Mater. 393, 253–259 (2015)

    Article  ADS  Google Scholar 

  19. Narang, S.B., Singh, A., Singh, K.: High frequency dielectric behavior of rare earth substituted Sr-M hexaferrite. J Ceram Process Res. 8, 347 (2007)

    Google Scholar 

  20. Rhein, F., Karmazin, R., Krispin, M., Reimann, T., Gutfleisch, O.: Enhancement of coercivity and saturation magnetization of Al3+ substituted M-type Sr-hexaferrites. J Alloys Compd. 690, 979–985 (2017)

    Article  Google Scholar 

  21. Cullity, B.D.: Elements of X-ray diffraction. Addison-Wesley Publishing, edition-1, (1956)

  22. Dhage, V.N., Mane, M.L., Keche, A.P., Birajdar, C.T., Jadhav, K.M.: Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys B Condens Matter. 406, 789–793 (2011)

    Article  ADS  Google Scholar 

  23. Sujatha, C., Reddy, K.V., Babu, K.S., Reddy, A.R., Rao, K.H.: Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram Int. 39, 3077–3086 (2013)

    Article  Google Scholar 

  24. Sözeri, H., Mehmedi, Z., Kavas, H., Baykal, A.: Magnetic and microwave properties of BaFe12O19 substituted with magnetic, non-magnetic and dielectric ions. Ceram Int. 41, 9602–9609 (2015)

    Article  Google Scholar 

  25. Winkler, M.T., Recht, D., Sher, M.J., Said, A.J., Mazur, E., Aziz, M.J.: Insulator-to-metal transition in sulfur-doped silicon. Phys Rev Lett. 106, 178701 (2011)

    Article  ADS  Google Scholar 

  26. Ertekin, E., Winkler, M.T., Recht, D., Said, A.J., Aziz, M.J., Buonassisi, T., Grossman, J.C.: Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. Phys Rev Lett. 108(026401), (2012)

  27. Anjum, S., Sehar, F., Mustafa, Z., Awan, M.S.: Enhancement of structural and magnetic properties of M-type hexaferrite permanent magnet based on synthesis temperature. Appl Phys A. 124, 49 (2018)

    Article  ADS  Google Scholar 

  28. Bakshi, V.U., Bakshi, U.A.: Electronic Measurements. Technical Publications, edition-1, (2007)

  29. Naito, Y., Suetake, K.: Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans Microw Theory Tech. 19, 65–72 (1971)

    Article  ADS  Google Scholar 

  30. Lobo, L.S., Kumar, A.R.: Investigation of structural and electrical properties of ZnMn 2 O 4 synthesized by sol–gel method. J Mater Sci Mater Electron. 27, 7398–7406 (2016)

    Article  Google Scholar 

  31. El Ata, A.A., Attia, S.M.: Dielectric dispersion of Y-type hexaferrites at low frequencies. J Magn Magn Mater. 257, 165–174 (2003)

    Article  ADS  Google Scholar 

  32. Sathishkumar, G., Venkataraju, C., Sivakumar, K.: Effect of nickel on the structural and magnetic properties of nano structured CoZnFe 2 O 4. J Mater Sci Mater Electron. 22(1715), (2011)

  33. Dyre, J.C., Schrøder, T.B.: Universality of ac conduction in disordered solids. Rev Mod Phys. 72, 873 (2000)

    Article  ADS  Google Scholar 

  34. Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  35. ur Rahman, A., Rafiq, M.A., Karim, S., Maaz, K., Siddique, M., Hasan, M.M.: Semiconductor to metallic transition and polaron conduction in nanostructured cobalt ferrite. J Phys D Appl Phys. 44, 165404 (u)

  36. Ashiq, M.N., Iqbal, M.J., Najam-ul-Haq, M., Gomez, P.H., Qureshi, A.M.: Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in high density recording media and microwave devices. J Magn Magn Mater. 324, 15–19 (2012)

    Article  ADS  Google Scholar 

  37. Ahmad, M., Rafiq, M.A., Hasan, M.M.: Transport characteristics and colossal dielectric response of cadmium sulfide nanoparticles. J Appl Phys. 114, 133702 (2013)

    Article  ADS  Google Scholar 

  38. Aravind, G., Gaffoor, A., Ravinder, D., Nathanial, V.: Impact of transition metal ion doping on electrical properties of lithium ferrite nanomaterials prepared by auto combustion method. Adv Mater Lett. 6, 179–185 (2015)

    Article  Google Scholar 

  39. Mudinepalli, V.R., Feng, L., Lin, W.C., Murty, B.S.: Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba 0.8 Sr 0.2 TiO 3 ceramics. J Adv Ceram. 4, 46–53 (2015)

    Article  Google Scholar 

  40. Pandya, R.J., Joshi, U.S., Caltun, O.F.: Microstructural and electrical properties of barium strontium titanate and nickel zinc ferrite composites. Procedia Mater Sci. 10, 168–175 (2015)

    Article  Google Scholar 

  41. Kong, L.B., Li, Z.W., Lin, G.Q., Gan, Y.B.: Magneto-dielectric properties of Mg–Cu–Co ferrite ceramics: II. electrical, dielectric, and magnetic properties. J Am Ceram Soc. 90, 2104–2112 (2007)

    Article  Google Scholar 

  42. Pervaiz, E., Gul, I.H.: Enhancement of electrical properties due to Cr3+ substitution in co-ferrite nanoparticles synthesized by two chemical techniques. J Magn Magn Mater. 324, 3695–3703 (2012)

    Article  ADS  Google Scholar 

  43. Na, E.H., Song, S., Koo, Y.M., Jang, H.M.: Relaxor-like improper ferroelectricity induced by Si· Sj-type collinear spin ordering in a M-type hexaferrite PbFe6Ga6O19. Acta Mater. 61, 7705–7711 (2013)

    Article  Google Scholar 

  44. Néel, L.: Magnetic properties of ferrites: ferrimagnetism and anti ferromagnetism. Ann Phys Paris. Crangle J 3, 137–198 (1991)

  45. Smit, J., Wijn, H.P.J.: Intrinsic properties of ferrites with hexagonal crystal structure. In: Ferrites. pp. 177–210. (1959)

  46. Ghasemi, A., Morisako, A.: Static and high frequency magnetic properties of Mn–Co–Zr substituted Ba-ferrite. J Alloys Compd. 456, 485–491 (2008)

    Article  Google Scholar 

  47. Pal, M., Brahma, P., Chakravorty, D., Agrawal, D.C.: Magnetic properties of Ba hexaferrites doped with bismuth oxide. J Magn Magn Mater. 147, 208–212 (1995)

    Article  ADS  Google Scholar 

  48. Ram, S., Krishnan, H., Rai, K.N., Narayan, K.A.: Magnetic and electrical properties of Bi2O3 modified BaFe12O19 hexagonal ferrite. Jpn J Appl Phys. 28(4R), 604 (1989)

    Article  ADS  Google Scholar 

  49. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A. 240, 599–642 (1948)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Anjum.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehar, F., Anjum, S., Mustafa, Z. et al. Co-existence of Ferroelectric and Ferromagnetic Properties of Bi+3 Substituted M-type Barium Hexaferrites. J Supercond Nov Magn 33, 2073–2086 (2020). https://doi.org/10.1007/s10948-020-05452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05452-y

Keywords

Navigation