Skip to main content
Log in

Investigation of structural and electrical properties of ZnMn2O4 synthesized by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this present study, we have reported the synthesis of ZnMn2O4, transitional metal oxide by sol–gel method. The structural and morphological properties are confirmed using various characterization techniques namely XRD, FT-IR and SEM with EDX. Dielectric studies of ZnMn2O4 are measured at the frequency varying from 50 Hz to 5 MHz for the temperature range of 303–573 K. The temperature dependent electrical parameters like impedance and modulus exhibit a strong correlation with the grains, grain boundaries and space charge effects in the synthesized material. Diffusion of oxygen vacancies in the dipoles and defects in the material due to oxygen vacancy complexes are investigated by the activation energy obtained from Arrhenius plot. It was found that the relaxation process was dominated by the hopping mechanism between the Mn3+ and Mn4+. Nyquist plot of impedance was attributed to the existence of space charge interface, grain boundary and grain conduction mechanism of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Gherbi, Y. Bessekhouad, M. Trari, Structure, optical and transport properties of Mg-doped ZnMn2O4. J. Alloys Compd. 655, 188–197 (2016). doi:10.1016/j.jallcom.2015.09.192

    Article  Google Scholar 

  2. P. Zhang, X. Li, Q. Zhao, S. Liu, Synthesis and optical property of one- dimensional spinel ZnMn2O4 nanorods. Nanoscale Res. Lett. 6, 323 (2011). doi:10.1186/1556-276X-6-323

    Article  Google Scholar 

  3. S.V. Lakshmi, S. Pauline, Structural, morpological and optical properties of hetarolite—ZnMn2O4 nano particle by hydrothermal method. Int. J. Sci. Res. 3, 8–9 (2014)

    Google Scholar 

  4. Y. Deng, S. Tang, Q. Zhang, Z. Shi, L. Zhang, S. Zhan et al., Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. J. Mater. Chem. 21, 11987 (2011). doi:10.1039/c1jm11575h

    Article  Google Scholar 

  5. R.N. Jadhav, V. Puri, Effect of film thickness and pH of zinc manganite on microwave absorption and complex permittivity. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 44, 1426–1428 (2014). doi:10.1080/15533174.2013.809744

    Article  Google Scholar 

  6. F. Méndez-martínez et al., Znx−1CuxMn2O4 spinels; synthesis, structural characterization and electrical evaluation. J. Mex. Chem. Soc. 54(1), 2–6 (2010)

    Google Scholar 

  7. M. Khairy, M.A. Mousa, Electrical and catalytic properties of gamma-irradiated and unirradiated ZnMn2O4 nanoparticles. Am. J. Chem. 2(6), 306–311 (2012)

    Article  Google Scholar 

  8. J. Takahashi, A. Miura, H. Itoh, K. Sawayama, T. Akazawa, Phase change and electrical resistivity of Zn–Mn–Ni–O-based NTC thermistors produced using IZC powder recycled from used dry batteries. Ceram. Int. 34, 853–857 (2008). doi:10.1016/j.ceramint.2007.09.035

    Article  Google Scholar 

  9. C.C. Wang, C.M. Lei, G.J. Wang, X.H. Sun, T. Li, Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures. J. Appl. Phys. 094103, 1–10 (2013). doi:10.1063/1.4794349

    Google Scholar 

  10. C. Elissalde, J. Ravez, Ferroelectric ceramics: defects and dielectric relaxations. J. Mater. Chem. (2001). doi:10.1039/b010117f

    Google Scholar 

  11. Y. Bessekhouad, M. Trari, Photocatalytic hydrogen production from suspension of spinel powders AMn2O4 (A = Cu and Zn). Int. J. Hydrogen Energy 27, 357–362 (2002)

    Article  Google Scholar 

  12. J. Xu, Z. Yang, Y. Zhang, X. Zhang, H.U.A. Wang, Bipolar resistive switching behaviours in ZnMn2O4 film deposited on p+-Si substrate by chemical solution deposition. Bull. Mater. Sci. 37, 1657–1661 (2014)

    Article  Google Scholar 

  13. P. Li, J. Liu, Y. Liu, Y. Wang, Z. Li, W. Wu et al., Three-dimensional ZnMn2O4/porous carbon framework from petroleum asphalt for high performance lithium-ion battery. Electrochim. Acta 180, 164–172 (2015). doi:10.1016/j.electacta.2015.08.095

    Article  Google Scholar 

  14. C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing. J. Appl. Crystallogr. 32(4), 838 (1999)

    Article  Google Scholar 

  15. J. Langford II, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978). doi:10.1107/S0021889878012844

    Article  Google Scholar 

  16. N. Kumari, V. Kumar, S.K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn ferrospinels. RSC Adv. 5, 37925–37934 (2015). doi:10.1039/C5RA03745J

    Article  Google Scholar 

  17. H. Rahmouni, M. Smari, B. Cerif, E. Dhahri, K. Khirouni, Conduction mechanisum, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with the composition below the concentration limit of silver solubility in perovskites (0 < x<0.2). Dalton Trans. (2015). doi:10.1039/C5DT00444F

    Google Scholar 

  18. S. Singh, S.E. Shirsath, Structural phases and Maxwell–Wagner relaxation in magnetically soft-ZnFe2O4 and hard-Sr2Cu2Fe12O22 nanocomposites. Ceram. Int. (2015). doi:10.1016/j.ceramint.2015.10.023

    Google Scholar 

  19. O. Padmaraj, M. Venkateswarlu, N. Satyanarayana, Structural, electrical and dielectric properties of spinel type MgAl2O4 nanocrystalline ceramic particles synthesized by the gel-combustion method. Ceram. Int. 41, 3178–3185 (2015). doi:10.1016/j.ceramint.2014.10.169

    Article  Google Scholar 

  20. T. Javed, A. Maqsood, Structural, electrical and dielectric properties of Co–Mn spinel nanoferrites prepared by co-precipitation technique. J Supercond. Nov. Magn. 4, 2137–2144 (2011). doi:10.1007/s10948-011-1168-7

    Article  Google Scholar 

  21. C. Sujatha, K.V. Reddy, K.S. Babu, A.R. Chandra, M.B. Suresh, K.H. Rao, Effect of Co substitution of Mg and Zn on electromagnetic properties of NiCuZn ferrites. J. Phys. Chem. Solids 74, 917–923 (2013). doi:10.1016/j.jpcs.2013.02.005

    Article  Google Scholar 

  22. M. Gerstl, E. Navickas, M. Leitgeb, G. Friedbacher, F. Kubel, J. Fleig, The grain and grain boundary impedance of sol-gel prepared thin layers of yttria stabilized zirconia (YSZ). Solid State Ion. 225, 732–736 (2012). doi:10.1016/j.ssi.2012.02.012

    Article  Google Scholar 

  23. M. Gerstl, E. Navickas, G. Friedbacher, F. Kubel, M. Ahrens, J. Fleig, The separation of grain and grain boundary impedance in thin yttria stabilized zirconia (YSZ) layers. Solid State Ion. 185, 32–41 (2011). doi:10.1016/j.ssi.2011.01.008

    Article  Google Scholar 

  24. W. Chen, W. Zhu, C. Ke, Z. Yang, L. Wang, X.F. Chen et al., Impedance spectroscopy and conductivity mechanism of CoFe2O4–Pb(Zr 0.53Ti0.47)O3 composite thick films. J. Alloys Compd. 508, 141–146 (2010). doi:10.1016/j.jallcom.2010.08.029

    Article  Google Scholar 

  25. A. Mekap, P.R. Das, R.N.P. Choudhary, Dielectric, magnetic and electrical properties of ZnFe2O4 ceramics. J. Mater. Sci.: Mater. Electron. 24, 4757–4763 (2013). doi:10.1007/s10854-013-1470-1

    Google Scholar 

  26. L.S. Lobo et al., Investigation of electrical studies of spinel FeCo2O4 synthesized by sol-gel method. Superlattices Microstruct. (2015). doi:10.1016/j.spmi.2015.09.010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ruban Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobo, L.S., Ruban Kumar, A. Investigation of structural and electrical properties of ZnMn2O4 synthesized by sol–gel method. J Mater Sci: Mater Electron 27, 7398–7406 (2016). https://doi.org/10.1007/s10854-016-4714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4714-z

Keywords

Navigation