Skip to main content
Log in

Tuning the Magnetic Properties of ZnFe2O4 Nanoparticles Through Partial Doping and Annealing

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of annealing temperature and cobalt cation (Co2+) doping on the magnetic properties of zinc ferrite (ZFO) nanoparticles. The nanoparticles were prepared through sol-gel combustion process with citric acid as the fuel. The obtained nanoparticles were annealed at several temperatures from 300 to 1000 °C for 2 h. Spinel formation was proved by X-ray diffraction (XRD) patterns, and the average crystallite size in all samples was estimated between 22 and 32 nm. It is worthwhile to mention that Fe2O3 and ZnO are detected as the medium phases. Meanwhile, Fe2O3 phase transformation to the other allotropes has happened around 400 °C and was characterized via the simultaneous thermal analysis (STA) and XRD. For higher annealing temperatures, diffusion has gradually been completed and, finally, the single phase of spinel structure was prepared at 1000 °C. In addition, field-emission scanning electron microscopy (FESEM) images revealed that the nanoparticle size after annealing was between 30 and 200 nm for the whole samples. The formation of the spinel phase was considered the most important factor on the magnetic properties of ZFO. Cobalt doping, annealing temperature, and also Fe2O3 phase were the main factors on changing magnetic properties. Paramagnetic nanoparticles with higher coercivity for doped samples rather than un-doped samples have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Krishnan, K.M. et al.: Nanomagnetism and spin electronics: materials, microstructure and novel properties. J. Mater. Sci. 41(1), 793–815 (2006)

    Article  ADS  Google Scholar 

  2. Berggren, K.-F., Yakimenko, I.: Effects of exchange and electron correlation on conductance and nanomagnetism in ballistic semiconductor quantum point contacts. Phys. Rev. B 66(5), 085323 (2002)

    Article  ADS  Google Scholar 

  3. Wang, S.-B., Min, Y.-L., Yu, S.-H.: Synthesis and magnetic properties of uniform hematite nanocubes. J. Phys. Chem. C 111(6), 3551–3554 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Niyaifar, M.: Effect of preparation on structure and magnetic properties of ZnFe2O4. J. Magn. 19(2), 101–105 (2014)

    Article  Google Scholar 

  5. Kombaiah, K. et al.: Effect of Cd2+ concentration on ZnFe2O4 nanoparticles on the structural, optical and magnetic properties. Optik-Int. J. Light Electron. Opt. 135, 190–199 (2017)

    Article  Google Scholar 

  6. Stewart, S., et al.: Cationic exchange in nanosized ZnFe2O4 spinel revealed by experimental and simulated near-edge absorption structure. Phys. Rev. B 75(4), 073408 (2007)

    Article  ADS  Google Scholar 

  7. Masoudpanah, S. et al.: Structure and magnetic properties of La substituted ZnFe2O4 nanoparticles synthesized by sol–gel auto-combustion method. J. Magn. Magn. Mater. 370, 122–126 (2014)

    Article  ADS  Google Scholar 

  8. Guo, X. et al.: ZnFe2O4 nanotubes: microstructure and magnetic properties. J. Phys. Chem. C 118(51), 30145–30152 (2014)

    Article  Google Scholar 

  9. Jeong, J.R. et al.: Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method. Phys. Status Solidi (B) 241(4), 1593–1596 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Sutka, A., Mezinskis, G.: Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6(2), 128–141 (2012)

    Article  Google Scholar 

  11. Kumar, Y. et al.: Effect of annealing on the magnetic properties of zinc ferrite thin films. Mater. Lett. 195, 89–91 (2017)

    Article  Google Scholar 

  12. John, H.T., Fraih, A.J.: Preparation of nano crystalline zinc–ferrite as material for micro waves absorption by sol-gel methods. Ind. J. Sci. Technol. 10(21), 1–6 (2017)

    Google Scholar 

  13. Thankachan, R.M. et al.: Enhanced lithium storage in ZnFe2O4–C nanocomposite produced by a low-energy ball milling. J. Power. Sources 282, 462–470 (2015)

    Article  ADS  Google Scholar 

  14. Erfaninia, N. et al.: Preparation of magnetically recyclable ZnFe2O4 nanoparticles by easy single-step co-precipitation method and their catalytic performance in the synthesis of 2-aminothiophenes. Appl. Organometallic Chem. 32(2), 1–7 (2018)

    Article  Google Scholar 

  15. Zhong, X. -B. et al.: A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium-ion batteries. J. Power. Sources 306, 718–723 (2016)

    Article  ADS  Google Scholar 

  16. Dhiman, M. et al.: Morphology-controlled hydrothermal synthesis and photocatalytic properties of ZnFe2O4 nanostructures. Ceram. Int. 42(8), 12594–12605 (2016)

    Article  Google Scholar 

  17. Singh, C. et al.: Synthesis of zinc-substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mater. Chem. Phys. 156, 188–197 (2015)

    Article  Google Scholar 

  18. Peng, Y. et al.: Structure and properties of Mn-Zn ferrite nanoparticles synthesized via the sol-gel auto-combustion method. J. Mater. Sci. Mater. Electron. 27(1), 587–591 (2016)

    Article  Google Scholar 

  19. Monfared, A. et al.: A rapid and efficient thermal decomposition approach for the synthesis of manganese-zinc/oleylamine core/shell ferrite nanoparticles. J. Alloys Compd. 693, 1090–1095 (2017)

    Article  Google Scholar 

  20. Martins, M.L. et al.: Mechanisms of phase formation along the synthesis of Mn–Zn ferrites by the polymeric precursor method. Ceram. Int. 40(7), 16023–16031 (2014)

    Article  Google Scholar 

  21. Sharma, R. et al.: Improvement in magnetic behaviour of cobalt-doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd. 684, 569–581 (2016)

    Article  Google Scholar 

  22. Li, Y. et al.: Magnetic properties of Cu0.48Ni0.52Fe2O4 and thermal process of precursor. J. Supercond. Nov. Magn. 26(3), 2153–2158 (2013)

    Article  Google Scholar 

  23. Oliver, S.A., Harris, V.G., Hamdeh, H.H., Ho, J.C.: Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders. Appl. Phys. Lett. 76(16), 2761–2763 (2000)

    Article  ADS  Google Scholar 

  24. Sivagurunathan, P., Sathiyamurthy, K.: Effect of temperatures on structural, morphological and magnetic properties of zinc ferrite nanoparticles. Can. Chem. Trans. 4(2), 244–54 (2016)

    Google Scholar 

  25. Smit, J., Wijn, H.: Ferrites Philips Technical Library, p 278. Eindhoven, The Netherlands (1959)

    Google Scholar 

  26. Raut, A.V. et al.: Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles. Mater. Res. Bull 63, 123–128 (2015)

    Article  Google Scholar 

  27. Manikandan, A. et al.: Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J. Magn. Magn. Mater. 349, 249–258 (2014)

    Article  ADS  Google Scholar 

  28. Weil, L., Bertaut, F., Bochirol, L.: Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre. J. Phys. Radium 11(5), 208–212 (1950)

    Article  Google Scholar 

  29. Nakagomi, F. et al.: Influence of the Mg-content on the cation distribution in cubic MgxFe3−xO4 nanoparticles. J. Solid State Chem. 182(6), 2423–2429 (2009)

    Article  ADS  Google Scholar 

  30. Jadhav, S.S. et al.: Structural properties and cation distribution of Co–Zn nanoferrites. Int. J. Modern Phys. B 23(30), 5629–5638 (2009)

    Article  ADS  MATH  Google Scholar 

  31. Gabal, M., Al Angari, Y.: Effect of chromium ion substitution on the electromagnetic properties of nickel ferrite. Mater. Chem. Phys. 118(1), 153–160 (2009)

    Article  Google Scholar 

  32. Singh, A.K. et al.: Dielectric properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 91(7), 6626–6629 (2002)

    Article  ADS  Google Scholar 

  33. Nikam, D.S. et al.: Cation distribution, structural, morphological and magnetic properties of Co1−xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv. 5(1), 2338–2345 (2015)

    Article  Google Scholar 

  34. Jadhav, S.S., et al.: Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. J. Appl. Phys. 108(6), 093920 (2010)

    Article  ADS  Google Scholar 

  35. Joseph, J. et al.: Structure and magnetic properties of highly textured nanocrystalline Mn–Zn ferrite thin film. Physica B 456, 293–297 (2015)

    Article  ADS  Google Scholar 

  36. Anwar, H., Maqsood, A., Gul, I.: Effect of synthesis on structural and magnetic properties of cobalt doped Mn–Zn nano ferrites. J. Alloys Compd. 626, 410–414 (2015)

    Article  Google Scholar 

  37. Waqas, H., Qureshi, A.: Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process. J. Therm. Anal. Calorim. 98(2), 355 (2009)

    Article  Google Scholar 

  38. Ebrahimi, S.S., Masoudpanah, S.: Effects of pH and citric acid content on the structure and magnetic properties of Mn-Zn ferrite nanoparticles synthesized by a sol–gel autocombustion method. J. Magn. Magn. Mater. 357, 77–81 (2014)

    Article  ADS  Google Scholar 

  39. Bakhshi, H., Shokuhfar, A., Afghahi, S.S.S.: Structural, magnetic and Raman study of CoFe2O4@ C core–shell nanoparticles. Ceram. Int. 41(6), 10736–10744 (2015)

    Article  Google Scholar 

  40. Li, X. -H. et al.: Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition. Nanoscale Res. Lett. 5(3), 1039 (2010)

    Article  ADS  Google Scholar 

  41. Yadav, R.S. et al.: Magnetic properties of Co1−xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378, 190–199 (2015)

    Article  ADS  Google Scholar 

  42. Deraz, N., Abd-Elkader, O.H.: Structural, morphological and magnetic properties of Zn0.5Mg0.5Fe2O4 as anticorrosion pigment. Int. J. Electrochem. Sci. 10(6), 7138–7146 (2015)

    Google Scholar 

  43. Zhang, S. -H. et al.: A family of cubane cobalt and nickel clusters: syntheses, structures and magnetic properties. Inorg. Chim. Acta 396, 119–125 (2013)

    Article  Google Scholar 

  44. Huili, H. et al.: Effect of cobalt substitution on the structure, electrical, and magnetic properties of nanorcrystalline Ni0.5Zn0.5Fe2O4 prepared by the polyol process. Ceram. Int. 40(7), 16235–16244 (2014)

    Article  Google Scholar 

  45. Abu-Dief, A.M. et al.: Effect of chromium substitution on the structural and magnetic properties of nanocrystalline zinc ferrite. Mater. Chem. Phys. 174, 164–171 (2016)

    Article  Google Scholar 

  46. Chen, X. et al.: Effect of particle size on magnetic properties of zinc chromite synthesized by sol–gel method. Appl. Phys. Lett. 81(23), 4419–4421 (2002)

    Article  ADS  Google Scholar 

  47. Upadhyay, C. et al.: Effect of size and synthesis route on the magnetic properties of chemically prepared nanosize ZnFe2O4. J. Magn. Magn. Mater. 312(2), 271–279 (2007)

    Article  ADS  Google Scholar 

  48. Goodenough, J.B., Loeb, A.L.: Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Phys. Rev. 98(2), 391 (1955)

    Article  ADS  Google Scholar 

  49. Upadhyay, C., Verma, H., Anand, S.: Cation distribution in nanosized Ni–Zn ferrites. J. Appl. Phys. 95(7), 5746–5751 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Bakhshi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehranian, P., Shokuhfar, A. & Bakhshi, H. Tuning the Magnetic Properties of ZnFe2O4 Nanoparticles Through Partial Doping and Annealing. J Supercond Nov Magn 32, 1013–1025 (2019). https://doi.org/10.1007/s10948-018-4785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4785-6

Keywords

Navigation