Skip to main content
Log in

Exploring the Dependence of Magnetic and Structural Properties on Co-precipitated Replacement of Zn in CoFe2O4 Nanoparticles

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc-substituted cobalt ferrite nanoparticles with the general formula of ZnxCo1−xFe2O4 (x = 0.0, 0.2, 0.4, 0.5 and 0.6) were synthesized via co-precipitation. X-ray diffraction (XRD) studies revealed that the strain created in the structures increased by adding zinc to the compositions. The calculated results from XRD data using Rietveld refinement indicated that the bond length decreases in the octahedral position and increases in the tetrahedral space with increasing zinc concentration in the composition. Morphology of the samples investigated by field emission scanning electron microscopy showed the formation of nearly spherical particles. Saturation magnetization (MS) of the synthesized samples showed an increasing trend up to x = 0.4, and then a decreasing behavior. The coercive field (HC) value was reduced from 1600 Oe for the zinc-free sample to 150 Oe for the Zn0.4Co0.6Fe2O4 composition. The ratio of remanence magnetization (Mr) to MS (Mr/Ms) in the zinc-doped samples was much lower than in the zinc-free sample, which is a sign of easy magnetic change after removal of the external magnetic field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.A. Asogekar, and V.M.S. Verenkar, Ceram. Int. 45, 21793 (2019).

    Article  CAS  Google Scholar 

  2. G.L. Jadhav, P.P. Khirade, A.R. Chavan, C.M. Kale, and K.M. Jadhav, J. Electron. Mater. 50, 6525 (2021).

    Article  CAS  Google Scholar 

  3. B. Shahbahrami, S.M. Rabiee, and R. Shidpoor, Adv. Ceram. Prog. 6, 1 (2020).

    Google Scholar 

  4. A. Khan, G.D.A. Quaderi, M.A. Bhuiyan, K.H. Maria, S. Choudhury, K.M.A. Hossain, D.K. Saha, and S. Akhter, Biointerface Res. Appl. Chem. 10, 5665 (2020).

    Article  CAS  Google Scholar 

  5. S. Kavitha, and M. Kurian, J. Alloys Compd. 799, 147 (2019).

    Article  CAS  Google Scholar 

  6. R. Asadi, H. Abdollahi, and M. Gharabaghi, Adv. Powder Technol. 31, 1480 (2020).

    Article  CAS  Google Scholar 

  7. A. Ramakrishna, N. Murali, S.J. Margarette, T.W. Mammo, N.K. Joythi, B. Sailaja, C.S. Kumari, K. Samatha, and V. Veeraiah, Adv. Powder Technol. 29, 2601 (2018).

    Article  CAS  Google Scholar 

  8. V. Mahdikhah, A. Ataie, A. Babaei, S. Sheibani, C.W.O. Yang, and S.K. Abkenar, J. Phys. Chem. Solids 134, 286 (2019).

    Article  CAS  Google Scholar 

  9. D.D. Andhare, S.R. Patade, J.S. Kounsalye, and K.M. Jadhav, Phys. B 583, 412051 (2020).

    Article  CAS  Google Scholar 

  10. S.G.C. Fonseca, L.S. Neiva, M.A.R. Bonifácio, P.R.C.D. dos Santos, U.C. Silva, and J.B.L. de Oliveira, Mater. Res. 21, e2017086 (2018). https://doi.org/10.1590/1980-5373-MR-2017-0861.

    Article  Google Scholar 

  11. R. Topkaya, A. Baykal, and A. Demir, J. Nanopart. Res. 15, 1359 (2013).

    Article  Google Scholar 

  12. M. Shakil, U. Inayat, M.I. Arshad, G. Nabi, N.R. Khalid, N.H. Tariq, A. Shah, and M.Z. Iqbal, Ceram. Int. 46, 7767 (2020).

    Article  CAS  Google Scholar 

  13. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, and A. Thakur, Ceram. Int. 46, 15740 (2020).

    Article  CAS  Google Scholar 

  14. B. Shahbahrami, S.M. Rabiee, R. Shidpoor, and H. Salimi-Kenari, Int. J. Eng. Trans. A Basics 35, 14 (2022).

    Google Scholar 

  15. A.T. Dhiwahar, M. Sundararajan, P. Sakthivel, C.S. Dash, and S. Yuvaraj, J. Phys. Chem. Solids 138, 109257 (2020).

    Article  Google Scholar 

  16. F.S.M. Sinfroni, P.Y.C. Santana, S.F.N. Coelho, F.C. Silva, A.S.D. Menezes, and S.K. Sharma, J. Electron. Mater. 46, 1145 (2017).

    Article  Google Scholar 

  17. B.D. Cullity, Elements of X-ray Diffraction (Massachusetts: Addison-Wesley Publishing Company, 1978).

    Google Scholar 

  18. A. Bajorek, C. Berger, M. Dulski, P. Lopadczak, M. Zubko, K. Prusik, M. Wojtyniak, A. Chrobak, F. Grasset, and N. Randrianantoandro, J. Phys. Chem. Solids 129, 1 (2019).

    Article  CAS  Google Scholar 

  19. Q. Lin, J. Xu, F. Yang, J. Lin, H. Yang, and Y. He, Materials 11, 1799 (2018).

    Article  Google Scholar 

  20. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, and K.M. Jadhav, Ceram. Int. 46, 8640 (2020).

    Article  CAS  Google Scholar 

  21. P. Motavallian, B. Abasht, O. Mirzaee, and H. Abdollah-Pour, Chin. J. Phys. 57, 6 (2019).

    Article  CAS  Google Scholar 

  22. N. Sanpo, C.C. Berndt, C. Wen, and J. Wang, Acta Biomater. 9, 5830 (2013).

    Article  CAS  Google Scholar 

  23. A.A. El-Fad, A.M. Hassan, M.H. Mahmoud, T. Tatarchuk, I.P. Yaremiy, A.M. Gismelssed, and M.A. Ahmed, J. Mag. Mag. Mater. 471, 192 (2019).

    Article  Google Scholar 

  24. V.K. Lakhani, T.K. Pathak, N.H. Vasoya, and K.B. Modi, Solid State Sci. 13, 539 (2011).

    Article  CAS  Google Scholar 

  25. B.B. Prasad, B.R. Babu, and M.S. Prasad, Mater. Sci. Pol. 33, 806 (2015).

    Article  Google Scholar 

  26. V.P. Senthil, J. Gajendiran, S.G. Raj, T. Shanmugavel, G.R. Kumar, and C.P. Reddy, Chem. Phys. Lett. 695, 19 (2018).

    Article  CAS  Google Scholar 

  27. X. Huang, Y. Zhou, W. Wu, J. Xu, S. Liu, D. Liu, and J. Wu, J. Electron. Mater. 45, 3113 (2016).

    Article  CAS  Google Scholar 

  28. W.D. Callister, and D.G. Rethwisch, Materials Science and Engineering: An introduction (Hoboken: John Wiley & Sons, 2013).

    Google Scholar 

  29. D.R. Askeland, P.P. Fulay, and W.J. Wright, The Science and Engineering of Materials (Stamford: Cengage Learning Inc., 2010).

    Google Scholar 

  30. S.M. Mane, P.M. Tirmali, B. Ranjit, M. Khan, N. Khan, A.N. Tarale, and S.B. Kulkarni, Solid State Sci. 81, 43 (2018).

    Article  CAS  Google Scholar 

  31. D.S. Mathew, and R.S. Juang, Chem. Eng. J. 129, 51 (2007).

    Article  CAS  Google Scholar 

  32. T. Sodaee, A. Ghasemi, and R. Shoja-Razavi, J. Clust. Sci. 27, 1239 (2016).

    Article  CAS  Google Scholar 

  33. K. Maaz, S. Karim, and G. Kim, Chem. Phys. 549, 67 (2012).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Department of Materials Engineering, Babol Noshirvani University of Technology for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Mahmood Rabiee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbahrami, B., Rabiee, S.M., Shidpoor, R. et al. Exploring the Dependence of Magnetic and Structural Properties on Co-precipitated Replacement of Zn in CoFe2O4 Nanoparticles. J. Electron. Mater. 51, 2552–2563 (2022). https://doi.org/10.1007/s11664-022-09512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09512-y

Keywords

Navigation