Skip to main content
Log in

Exploring the Structural Mechanism of Covalently Bound E3 Ubiquitin Ligase: Catalytic or Allosteric Inhibition?

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Covalent inhibition has recently gained a resurgence of interest in several drug discovery areas. The expansion of this approach is based on evidence elucidating the selectivity and potency of covalent inhibitors when bound to particular amino acids of a biological target. The Nedd4-1, an E3 ubiquitin ligase, is characterized by two covalent binding sites, of which catalytic Cyscat and allosteric Cysallo are enclosed. This enzyme has demonstrated inhibition at both the above-mentioned binding sites; however, a detailed molecular understanding of the structural mechanism of inhibition upon Cyscat and Cysallo binding remains vague. This prompted us to provide the first account of investigating the preferential covalent binding mode and the underlying structural and molecular dynamic implications. Based on the molecular dynamic analyses, it was evident that although both catalytic and allosteric covalent binding led to greater stability of the enzyme, a preferential covalent mechanism of inhibition was seen in the allosteric-targeted system. This was supported by a more favorable binding energy in the allosteric site compared to the catalytic site, in addition to the larger number of residue interactions and stabilizing hydrogen bonds occurring in the allosteric covalent bound complex. The fundamental dynamic analysis presented in this report compliments, as well as adds to previous experimental findings, thus leading to a crucial understanding of the structural mechanism by which Nedd4-1 is inhibited. The findings from this study may assist in the design of more target-specific Nedd4-1 covalent inhibitors exploring the surface-exposed cysteine residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Annu Rev Biochem 78:363–397

    Article  CAS  Google Scholar 

  2. Bhogaraju S, Dikic I (2016) Nature 533:43–44

    Article  CAS  Google Scholar 

  3. Rotin D, Kumar S (2009) Nat Rev Mol Cell Biol 10:398–409

    Article  CAS  Google Scholar 

  4. An H, Krist DT, Statsyuk AV (2014) Mol BioSyst Mol BioSyst 10:1643–1657

    Article  CAS  Google Scholar 

  5. Kathman SG, Span I, Smith AT, Xu Z, Zhan J, Rosenzweig AC, Statsyuk AV (2015) J Am Chem Soc 137:12442–12445

    Article  CAS  Google Scholar 

  6. Edwin F, Anderson K, Patel TB (2010) J Biol Chem 285:255–264

    Article  CAS  Google Scholar 

  7. Ingham RJ, Gish G, Pawson T (2004) Oncogene 23:1972–1984

    Article  CAS  Google Scholar 

  8. Zou X, Levy-cohen G, Blank M (2015) BBA - Rev Cancer 1856:91–106

    CAS  Google Scholar 

  9. Gallo LH, Ko J, Donoghue DJ (2017) Cell Cycle 16:634–648

    Article  CAS  Google Scholar 

  10. Diehl JA, Fuchs SY, Haines DS (2010) Genes Cancer 1:679–680

    Article  Google Scholar 

  11. Porter CT, Bartlett GJ, Thornton JM (2004) Nucleic Acids Res 32:D129–D133

    Article  CAS  Google Scholar 

  12. Kenakin T (2007) Curr Neuropharmacol 5:149–156

    Article  CAS  Google Scholar 

  13. Changeux J, Edelstein SJ (2005) Science. https://doi.org/10.1126/science.1108595

    Article  PubMed  Google Scholar 

  14. Schwab A, Illarionov B, Frank A, Kunfermann A, Seet M, Bacher A, Witschel MC, Fischer M, Groll M, Diederich F (2017) ACS Chem Biol 12:2132–2138

    Article  CAS  Google Scholar 

  15. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  16. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  17. Technologies I, Molegro Molecular Viewer, http://molegro-molecular-viewer.software.informer.com

  18. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  19. Trott O, Olson AJ (2009) J Comput Chem 31:NA-NA

    Google Scholar 

  20. Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) J Comput Aided Mol Des 27:221–234

    Article  CAS  Google Scholar 

  21. Mhlongo NN, Ebrahim M, Skelton AA, Kruger HG, Williams IH, Soliman MES (2015) RSC Adv 5:82381–82394

    Article  CAS  Google Scholar 

  22. Ramharack P, Oguntade S, Soliman MES (2017) RSC Adv 7:22133–22144

    Article  CAS  Google Scholar 

  23. Götz AW, Williamson MJ, Xu D, Poole D, Le Grand S, Walker RC (2012) J Chem Theory Comput 8:1542–1555

    Article  Google Scholar 

  24. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Proteins 78:1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Betz R (2017) Dabble. Zenodo. https://doi.org/10.5281/ZENODO.836914

  26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  27. Hopkins CW, Le Grand S, Walker RC, Roitberg AE (2015) J Chem Theory Comput 11:1864–1874

    Article  CAS  Google Scholar 

  28. Khan S, Bjij I, Betz RM, Soliman ME (2018) Future Med Chem 10:1003–1015

    Article  CAS  Google Scholar 

  29. Roe DR, Cheatham TE (2013) J Chem Theory Comput 9:3084–3095

    Article  CAS  Google Scholar 

  30. Seifert E (2014) J Chem Inf Model 54:1552–1552

    Article  CAS  Google Scholar 

  31. Parak FG (2003) Curr Opin Struct Biol 13:552–557

    Article  CAS  Google Scholar 

  32. Zhang H, Zhang T, Chen K, Shen S, Ruan J, Kurgan L (2009) Proteins 76:617–636

    Article  CAS  Google Scholar 

  33. Ragone R (2001) Protein Sci 10:2075–2082

    Article  CAS  Google Scholar 

  34. Vanga SK, Singh A, Raghavan V (2015) Innov Food Sci Emerg Technol 30:79–88

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Center for High Computing Performance (CHPC) (http://www.chpc.ac.za), Cape Town for resources and technical support as well as the College of Health Sciences for the financial support. R.M.B is supported by NVIDIA fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. S. Soliman.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3118 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjij, I., Khan, S., Betz, R. et al. Exploring the Structural Mechanism of Covalently Bound E3 Ubiquitin Ligase: Catalytic or Allosteric Inhibition?. Protein J 37, 500–509 (2018). https://doi.org/10.1007/s10930-018-9795-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9795-5

Keywords

Navigation