Skip to main content
Log in

Development of Shape Memory Polylactic Acid/Ethylene-Butyl Acrylate-Maleic Anhydride (PLA/EBA-MAH) Blends for 4D Printing Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study investigates the feasibility of producing filaments and 4D printed parts with shape memory properties using Polylactic Acid/Ethylene-Butyl Acrylate-Maleic Anhydride (PLA/EBA-MAH) blends. The blends were melt blended and characterized using various techniques, including Fourier Transform Infrared Spectroscopy (FTIR) to analyze chemical interactions, Scanning Electron Microscopy (SEM) to study morphology, and Rheological analysis for viscoelastic behavior assessment. Dynamic Mechanical Analysis (DMA) was conducted to evaluate mechanical properties and glass transition temperature. The PLA/EBA-MAH 50/50 blend exhibited a co-continuous morphology, and storage modulus and viscosity decreased with increasing EBA-MAH content, emphasizing the enhanced processability of these compositions. In 4D printing experiments, the filaments demonstrated successful extrusion and shape memory activation. The 4D printed parts exhibited shape recovery in a rheometer, showcasing remarkable memory retention upon deformation. This achievement is noteworthy, as the majority of the literature focuses on shape memory activation solely in water for hydrophilic polymers. The successful production of filaments and 4D printed parts with shape memory properties at a high filling density (100%) and an orientation of approximately 45° further extends their potential in diverse applications, particularly for flexible filaments with shape memory capabilities. Overall, this research not only demonstrates the successful production of filaments and 4D printed structures but also highlights the impressive shape memory behavior of PLA/EBA-MAH blends. The combination of favorable rheological properties and shape memory activation expands the potential of these blends for applications requiring flexible and shape-shifting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The dataset used in this study is available upon reasonable request.

References

  1. Da Cunha RB, de Brito G, Agrawal P, De TJA, Mélo (2023) Polímeros com memória de forma: características, tipos e aplicações. Obs La Econ Latinoam 21:730–755. https://doi.org/10.55905/oelv21n2-008

    Article  Google Scholar 

  2. Parameswaranpillai J, Siengchin S, George JJ, Jose S (2020) Shape Memory Polymers, Blends and Composites: Advances and Applications, http://link.springer.com/https://doi.org/10.1007/978-981-13-8574-2

  3. Xia Y, He Y, Zhang F, Liu Y, Leng J (2021) A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv Mater 33:1–33. https://doi.org/10.1002/adma.202000713

    Article  CAS  Google Scholar 

  4. Mehrpouya M, Vahabi H, Janbaz S, Darafsheh A, Mazur TR, Ramakrishna S (2021) 4D printing of shape memory polylactic acid (PLA). Polym (Guildf) 230:124080. https://doi.org/10.1016/j.polymer.2021.124080

    Article  CAS  Google Scholar 

  5. Liu H, Wang F, Wu W, Dong X, Sang L (2023) 4D printing of mechanically robust PLA/TPU/Fe3O4 magneto-responsive shape memory polymers for smart structures. Compos Part B Eng 248:110382. https://doi.org/10.1016/J.COMPOSITESB.2022.110382

    Article  CAS  Google Scholar 

  6. Ma S, Jiang Z, Wang M, Zhang L, Liang Y, Zhang Z, Ren L, Ren L (2021) 4D printing of PLA/PCL shape memory composites with controllable sequential deformation. Bio-Design Manuf 4:867–878. https://doi.org/10.1007/s42242-021-00151-6

    Article  CAS  Google Scholar 

  7. Nagarajan V, Mohanty AK, Misra M (2016) Perspective on Polylactic Acid (PLA) based sustainable materials for durable applications: Focus on Toughness and Heat Resistance. ACS Sustain Chem Eng 4:2899–2916. https://doi.org/10.1021/acssuschemeng.6b00321

    Article  CAS  Google Scholar 

  8. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. da Cunha RB, Pê FR, Agrawal P, de Figueiredo Brito G, de Mélo TJA (2023) Influence of crystallization on the shape memory effect of poly (lactic acid), Smart Mater. Struct. https://doi.org/10.1088/1361-665X/ace226

  10. Braga R (2023) Toughening and Shape Memory Effect on PLA / Copolymers Blends Produced by Simultaneous Dynamic Vulcanization and Reactive Compatibilization, Shape Mem. Superelasticity. https://doi.org/10.1007/s40830-023-00447-9

  11. Liu H, Chen F, Liu B, Estep G, Zhang J (2010) Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules 43:6058–6066. https://doi.org/10.1021/ma101108g

    Article  ADS  CAS  Google Scholar 

  12. Chen Y, Chen K, Wang Y, Xu C, Compatibilization (2015) Ind Eng Chem Res 54:8723–8731. https://doi.org/10.1021/acs.iecr.5b02195

    Article  CAS  Google Scholar 

  13. Guo W, Lu CH, Orbach R, Wang F, Qi XJ, Cecconello A, Seliktar D, Willner I (2014) pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv Mater 27:73–78. https://doi.org/10.1002/adma.201403702

    Article  CAS  PubMed  Google Scholar 

  14. Herath M, Epaarachchi J, Islam M, Fang L, Leng J (2020) Light activated shape memory polymers and composites: a review. Eur Polym J 136:109912. https://doi.org/10.1016/j.eurpolymj.2020.109912

    Article  CAS  Google Scholar 

  15. Li W, Liu Y, Leng J (2018) Light-actuated reversible shape memory effect of a polymer composite, Compos. Part A Appl. Sci Manuf 110:70–75. https://doi.org/10.1016/j.compositesa.2018.04.019

    Article  CAS  Google Scholar 

  16. Garces IT, Aslanzadeh S, Boluk Y, Ayranci C (2019) Effect of moisture on shape memory polyurethane polymers for extrusion-based additive manufacturing. Mater (Basel) 12. https://doi.org/10.3390/ma12020244

  17. Azizul Rahim FH, Saleh AA, Shuib RK, Ku Ishak KM, Abdul Hamid ZA, Abdullah MK, Shafiq MD, Rusli A (2021) Thermo-responsive shape memory properties based on polylactic acid and styrene-butadiene-styrene block copolymer. J Appl Polym Sci 138:1–13. https://doi.org/10.1002/app.51000

    Article  CAS  Google Scholar 

  18. Meena CR (2012) Shape memory polymers in textiles, J. Text. Assoc. 73 45–46. https:/https://doi.org/10.4028/www.scientific.net/ast.80.30

  19. Hu J (2014) Shape memory polymers: Fundamentals, advances and applications, vol 44. Smithers Rapra, p 295. http://www.smithersrapra.com/products/books/browse-by-category/handbooks/shape-memory-polymers-fundamentals,-advances-and-a

  20. Ze Q, Kuang X, Wu S, Wong J, Montgomery SM, Zhang R, Kovitz JM, Yang F, Qi HJ, Zhao R (2020) Magnetic shape memory polymers with Integrated multifunctional shape manipulation. Adv Mater 32:1–8. https://doi.org/10.1002/adma.201906657

    Article  CAS  Google Scholar 

  21. Behl M, Lendlein A (2007) Shape-memory polymers are an emerging class of active polymers that. Mater Today 10:20–28

    Article  CAS  Google Scholar 

  22. Tezerjani SMD, Yazdi MS, Hosseinzadeh MH (2022) The effect of 3D printing parameters on the shape memory properties of 4D printed polylactic acid circular disks: an experimental investigation and parameters optimization. Mater Today Commun 33:104262. https://doi.org/10.1016/J.MTCOMM.2022.104262

    Article  CAS  Google Scholar 

  23. Diani J, Gall K (2006) Finite strain 3D thermoviscoelastic constitutive model. Society 1–10. https://doi.org/10.1002/pen

  24. Subramaniam SR, Samykano M, Selvamani SK, Ngui WK, Kadirgama K, Sudhakar K, Idris MS (2019) 3D printing: overview of PLA progress. AIP Conf Proc 2059. https://doi.org/10.1063/1.5085958/790435

  25. da Cunha RB, Cavalcanti SN, Agrawal P, de Brito G, de Mélo TJA (2023) Evaluation of shape memory effect in PLA/copolymers blends. J Appl Polym Sci 15–21. https://doi.org/10.1002/app.54561

  26. da Cunha RB, Agrawal P, Quirino Brito LB, Candido Cunha CT, de Brito G (2023) Alves de Mélo, 4D printing of shape memory polylactic acid/ethylene-glycidyl methacrylate (PLA/E-GMA) blends. Smart Mater Struct 32:095015. https://doi.org/10.1088/1361-665X/aceae5

    Article  ADS  Google Scholar 

  27. Rahmatabadi D, Ghasemi I, Baniassadi M, Abrinia K, Baghani M (2023) 4D printing of PLA-TPU blends: effect of PLA concentration, loading mode, and programming temperature on the shape memory effect. J Mater Sci 58:7227–7243. https://doi.org/10.1007/S10853-023-08460-0/FIGURES/11

    Article  ADS  CAS  Google Scholar 

  28. Huang X, Panahi-Sarmad M, Dong K, Cui Z, Zhang K, Gelis Gonzalez O, Xiao X (2022) 4D printed TPU/PLA/CNT wave structural composite with intelligent thermal-induced shape memory effect and synergistically enhanced mechanical properties. Compos Part A Appl Sci Manuf 158:106946. https://doi.org/10.1016/J.COMPOSITESA.2022.106946

    Article  CAS  Google Scholar 

  29. Roudbarian N, Baniasadi M, Nayyeri P, Ansari M, Hedayati R, Baghani M (2021) Enhancing shape memory properties of multi-layered and multi-material polymer composites in 4D printing. Smart Mater Struct 30:105006. https://doi.org/10.1088/1361-665X/AC1B3B

    Article  ADS  CAS  Google Scholar 

  30. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079. https://doi.org/10.1016/j.pmatsci.2005.05.002

    Article  CAS  Google Scholar 

  31. Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S (2020) Super tough poly(lactic acid) blends: a comprehensive review. RSC Adv 10:13316–13368. https://doi.org/10.1039/d0ra01801e

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagarajan V, Mohanty AK, Misra M (2018) Blends of polylactic acid with thermoplastic copolyester elastomer: effect of functionalized terpolymer type on reactive toughening. Polym Eng Sci 58:280–290. https://doi.org/10.1002/PEN.24566

    Article  CAS  Google Scholar 

  33. de Araújo JP, de Oliveira ADB, Cavalcanti SN, Agrawal P, de Mélo TJA (2019) Combined effect of copolymers and of the mixing sequence on the rheological properties and morphology of poly(lactic acid) matrix blends. Mater Chem Phys 237. https://doi.org/10.1016/j.matchemphys.2019.121818

  34. Oyama HT (2009) Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polym (Guildf) 50:747–751. https://doi.org/10.1016/j.polymer.2008.12.025

    Article  CAS  Google Scholar 

  35. Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Part B Polym Phys 49:1051–1083. https://doi.org/10.1002/polb.22283

    Article  ADS  CAS  Google Scholar 

  36. Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F (2018) Polylactic acid blends: the future of green, light and tough. Prog Polym Sci 85:83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001

    Article  CAS  Google Scholar 

  37. Yang Y, Zhang L, Xiong Z, Tang Z, Zhang R, Zhu J (2016) Research progress in the heat resistance, toughening and filling modification of PLA. Sci China Chem 59:1355–1368. https://doi.org/10.1007/s11426-016-0222-7

    Article  CAS  Google Scholar 

  38. Yu-Lin ZG-YFENG, Jing-Hua YIN, Wei JIANG (2012) Properties of Poly(lactic acid) toughened by epoxy-functionalized Elastomer. Chem J CHINESE Univ 33:2–5

    Google Scholar 

  39. Dogan SK, Gumus S, Aytac A, Ozkoc G (2013) Properties of modified ethylene terpolymer/poly(lactic acid) blends based films. Fibers Polym 14:1422–1431. https://doi.org/10.1007/s12221-013-1422-7

    Article  CAS  Google Scholar 

  40. Brito GF, Agrawal P, Araújo EM, De Melo TJA (2012) Tenacificação do Poli (Ácido Lático) pela Adição do Terpolímero Toughening of Polylactide by Melt blending with an, Polímeros. 22 164–169

  41. Sclavons M, Laurent M, Devaux J, Carlier V (2005) Maleic anhydride-grafted polypropylene: FTIR study of a model polymer grafted by ene-reaction. Polym (Guildf) 46:8062–8067. https://doi.org/10.1016/j.polymer.2005.06.115

    Article  CAS  Google Scholar 

  42. Li M, Wen X, Liu J, Tang T (2014) Synergetic effect of epoxy resin and maleic anhydride grafted polypropylene on improving mechanical properties of polypropylene/short carbon fiber composites. Compos Part A Appl Sci Manuf 67:212–220. https://doi.org/10.1016/j.compositesa.2014.09.001

    Article  CAS  Google Scholar 

  43. Yuan D, Chen Z, Xu C, Chen K, Chen Y (2015) Fully biobased shape memory material based on Novel Cocontinuous structure in Poly(Lactic Acid)/Natural Rubber TPVs fabricated via Peroxide-Induced Dynamic Vulcanization and in situ Interfacial Compatibilization, ACS Sustain. Chem Eng 3:2856–2865. https://doi.org/10.1021/acssuschemeng.5b00788

    Article  CAS  Google Scholar 

  44. Wagermaier W, Kratz K, Heuchel M, Lendlein A, Lendlein A. Shape-Memory Polymers (eds) (2009)

  45. Lendlein A, Gould OEC (2019) Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat Rev Mater 4:116–133. https://doi.org/10.1038/s41578-018-0078-8

    Article  ADS  Google Scholar 

  46. Lendlein A, Kelch S (2002) Shape-memory Effect from permanent shape. Angew Chem Int Ed Engl 41:2034–2057

    Article  CAS  Google Scholar 

  47. Brito GF, Agrawal P, Mélo TJA, Mechanical and Morphological Properties of PLA/BioPE Blend Compatibilized with E-GMA and EMA, Copolymers -GMA (2016) Macromol. Symp. 367 176–182. https://doi.org/10.1002/masy.201500158

  48. Rieger J (2001) Glass transition temperature tg of polymers - comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Test 20:199–204. https://doi.org/10.1016/S0142-9418(00)00023-4

    Article  CAS  Google Scholar 

  49. Saud Al-Humairi SN, Sh. Majdi H, Saud Al-Humairi AN, Al-Maamori M (2019) Future prospects: shape memory features in shape memory polymers and their corresponding Composites, Smart Funct. Soft Mater. https://doi.org/10.5772/intechopen.84924

    Article  Google Scholar 

  50. Huang WM, Yang B, An L, Li C, Chan YS (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:1–3. https://doi.org/10.1063/1.1880448

    Article  CAS  Google Scholar 

  51. Fan K, Huang WM, Wang CC, Ding Z, Zhao Y, Purnawali H, Liew KC, Zheng LX (2011) Water-responsive shape memory hybrid: design concept and demonstration. Express Polym Lett 5:409–416. https://doi.org/10.3144/expresspolymlett.2011.40

    Article  CAS  Google Scholar 

  52. Liu Y, Li Y, Chen H, Yang G, Zheng X, Zhou S (2014) Water-induced shape-memory poly(d,l-lactide)/microcrystalline cellulose composites. Carbohydr Polym 104:101–108. https://doi.org/10.1016/j.carbpol.2014.01.031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian research funding agencies National Council for Science and Technology (CNPq), (PA grant number 442128/20142/UNIVERSAL, TJAM grant number 426191/20161 and 577061/20089) and the Coordination for the Improvement of Higher Education Personnel (CAPES) (RBC: Scholarship).

Author information

Authors and Affiliations

Authors

Contributions

RB - Conducted the tests, plotted graphs and figures, wrote the article. PA - Helped with essays, helped with graphics and figures, proofread the English of the article. AS - Performed the SEM and cryogenic tests and assisted in the analysis and interpretation of the results. Helped with changes suggested by reviewers on SEM modifications and new analyses. GF - Guidance, review of the article, procurement of raw materials, assistance in the literature review (supervisor teacher). TM - Guidance, review of the article, laboratory coordinator, assistance in the literature review (supervisor teacher). All authors reviewed the manuscript.

Corresponding author

Correspondence to Rafael Braga da Cunha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

There are no ethical issues involved in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha, R.B., Agrawal, P., da Silva Lúcio, A. et al. Development of Shape Memory Polylactic Acid/Ethylene-Butyl Acrylate-Maleic Anhydride (PLA/EBA-MAH) Blends for 4D Printing Applications. J Polym Environ 32, 1423–1438 (2024). https://doi.org/10.1007/s10924-023-03072-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03072-w

Keywords

Navigation