Skip to main content
Log in

Antibacterial/Antioxidant Activity of CuO Impacted Xanthan Gum/Chitosan @Ascorbic Acid Nanocomposite Films

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, we have prepared biopolymers based nanocomposite films that consist of ascorbic acid for food packaging applications. The prepared CuO@Ascorbic acid nanoparticles were investigated using chitosan and xanthan gum films for comparative purpose. All the prepared nanocomposite films were characterized using FTIR, UV–Vis, XRD, DSC, TGA, SEM, TEM, XPS, Antibacterial and Antioxidant activity. According to the study results, the incorporation of CuO@Ascorbic into biopolymer films significantly improved the desired mechanical performance. Both Xanthan gum incorporated CuO@Ascorbic acid (X CA) and Chitosan incorporated CuO@Ascorbic acid (A CA) films have high antibacterial activity and robust antioxidant behavior compared to bare whereas X CA showed superior bactericidal and antioxidant activities than A CA. The findings revealed that X CA have the potential to be used as a barrier coating in biological food packaging due to scavenging activity as the IC50 value is 52.9 which showed strong antioxidant which would be more suitable for packaging of food materials such as meat and fresh vegetables.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rukmanikrishnan B, Ramalingam S, Rajasekharan SK, Lee J, Lee J (2020) Binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: biocompatibility, antioxidant activity, UV and water barrier properties. Int J Biol Macromol 153:55–62. https://doi.org/10.1016/j.ijbiomac.2020.03.016

    Article  CAS  PubMed  Google Scholar 

  2. Blilid S, Kędzierska M, Miłowska K, Wrońska N, ElAchaby M, Katir N, El Kadib A (2020) Phosphorylated micro- and nanocellulose-filled chitosan nanocomposites as fully sustainable, biologically active bioplastics. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.0c04426

    Article  Google Scholar 

  3. Ezati P, Riahi Z, Rhim (2021) Carrageenan-based functional films integrated with CuO-doped titanium nanotubes for active food-packaging applications. ACS Sustain Chem Eng 9(28):9300–9307. https://doi.org/10.1021/acssuschemeng.1c01957

    Article  CAS  Google Scholar 

  4. Soares JMA, da Silva Júnior ED, Oliveira de Veras B et al (2022) Active biodegradable film based on chitosan and cenostigma nordestinum’ extracts for use in the food industry. J Polym Environ 30:217–231. https://doi.org/10.1007/s10924-021-02192-5

    Article  CAS  Google Scholar 

  5. RoyRhim S (2021) Fabrication of carboxymethyl cellulose/agar-based functional films hybridized with alizarin and grapefruit seed extract. ACS Appl Bio Mater 4(5):4470–4478. https://doi.org/10.1021/acsabm.1c00214

    Article  CAS  Google Scholar 

  6. Siddiqui MN, Redhwi HH, Achilias DS et al (2018) Green synthesis of silver nanoparticles and study of their antimicrobial properties. J Polym Environ 26:423–433. https://doi.org/10.1007/s10924-017-0962-0

    Article  CAS  Google Scholar 

  7. Brito J, Hlushko H, Abbott A, Aliakseyeu A, Hlushko R, Sukhishvili SA (2021) Integrating antioxidant functionality into polymer materials: fundamentals, strategies, and applications. ACS Appl Mater Interfaces 13(35):41372–41395. https://doi.org/10.1021/acsami.1c08061

    Article  CAS  PubMed  Google Scholar 

  8. Lizundia E, Armentano I, Luzi F, Bertoglio F, Restivo E, Visai L, Puglia D (2020) Synergic effect of nanolignin and metal oxide nanoparticles into poly (l-lactide) bionanocomposites: material properties, antioxidant activity and antibacterial performance. ACS Appl Bio Mater. https://doi.org/10.1021/acsabm.0c00637

    Article  PubMed  Google Scholar 

  9. Roy S, Kim H-J, Rhim J-W (2021) Synthesis of carboxymethyl cellulose and agar-based multifunctional films reinforced with cellulose nanocrystals and shikonin. ACS Appl Polym Mater 3(2):1060–1069. https://doi.org/10.1021/acsapm.0c01307

    Article  CAS  Google Scholar 

  10. Joshy KS, Jose J, Li T, Thomas M, Shankregowda AM, Sreekumaran S, Kalarikkal N, Thomas S (2020) Application of novel zinc oxide reinforced xanthan gum hybrid system for edible coatings. Int J Biol Macromol 151:806–813. https://doi.org/10.1016/j.ijbiomac.2020.02.085

    Article  CAS  Google Scholar 

  11. Ribeiro M, Boudoukhani M, Belmonte-Reche E, Genicio N, Sillankorva S, Gallo J, Bañobre-López M (2021) Xanthan-Fe3O4 nanoparticle composite hydrogels for non-invasive magnetic resonance imaging and magnetically assisted drug delivery. ACS Appl Nano Mater 4(8):7712–7729. https://doi.org/10.1021/acsanm.1c00932

    Article  CAS  Google Scholar 

  12. Inphonlek S, Niamsiri N, Sunintaboon P, Sirisinha C (2020) Chitosan/xanthan gum porous scaffolds incorporated with in-situ-formed poly(lactic acid) particles: their fabrication and ability to adsorb anionic compounds. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2020.125263

    Article  Google Scholar 

  13. Zhang Li, Zhang Z, Chen Y, Ma X, Xia M (2021) Chitosan and procyanidin composite films with high antioxidant activity and pH responsivity for cheese packaging. Food Chem 338:128013. https://doi.org/10.1016/j.foodchem.2020.128013

    Article  CAS  PubMed  Google Scholar 

  14. Asadi S, Pirsa S (2020) Production of biodegradable film based on polylactic acid, modified with lycopene pigment and TiO2 and studying its physicochemical properties. J Polym Environ 28:433–444. https://doi.org/10.1007/s10924-019-01618-5

    Article  CAS  Google Scholar 

  15. Estevez-Areco S, Guz L, Famá L, Candal R, Goyanes S (2019) Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2019.05.054

    Article  Google Scholar 

  16. Roy S, Rhim J-W (2019) Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles. Colloids Surf B 176:317–324. https://doi.org/10.1016/j.colsurfb.2019.01.023

    Article  CAS  Google Scholar 

  17. Silva NHCS, Figueira P, Fabre E, Pinto RJB, Pereira ME, Silvestre AJD, Freire CSR (2020) Dual nanofibrillar-based bio-sorbent films composed of nanocellulose and lysozyme nanofibrils for mercury removal from spring waters. Carbohydr Polym 238:116210. https://doi.org/10.1016/j.carbpol.2020.116210

    Article  CAS  PubMed  Google Scholar 

  18. Bao Y, Zhang H, Luan Q, Zheng M, Tang Hu, Huang F (2018) Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities. Carbohydr Polym 184:66–73. https://doi.org/10.1016/j.carbpol.2017.12.051

    Article  CAS  PubMed  Google Scholar 

  19. Quilaqueo Gutiérrez M, Echeverría I, Ihl M, Bifani V, Mauri AN (2012) Carboxymethylcellulose–montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohydr Polym 87(2):1495–1502. https://doi.org/10.1016/j.carbpol.2011.09.040

    Article  CAS  Google Scholar 

  20. Klangmuang P, Sothornvit R (2016) Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocolloids 61:609–616. https://doi.org/10.1016/j.foodhyd.2016.06.018

    Article  CAS  Google Scholar 

  21. Nazarzadeh Zare E, Mansour Lakouraj M, Mohseni M (2014) Biodegradable polypyrrole/dextrin conductive nanocomposite: synthesis, characterization, antioxidant and antibacterial activity. I. Synth Metals 187:9–16. https://doi.org/10.1016/j.synthmet.2013.09.04

    Article  CAS  Google Scholar 

  22. Alizadeh N, Malakzadeh S (2020) Antioxidant, antibacterial and anti-cancer activities of β-and γ-CDs/curcumin loaded in chitosan nanoparticles. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.01.20

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pirsa S, Farshchi E, Roufegarinejad L (2020) Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. J Polym Environ 28:3154–3163. https://doi.org/10.1007/s10924-020-01846-0

    Article  CAS  Google Scholar 

  24. Hadidi M, Pouramin S, Adinepour F, Haghani S, Mahdi Jafari S (2020) Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.116075

    Article  Google Scholar 

  25. Zhang S, Ye T (2022) Preparation of natural composite microcapsules containing orchid black currant fragrance and its sustained-release properties on hair bundle. J Polym Environ 30:136–150. https://doi.org/10.1007/s10924-021-02173-8

    Article  CAS  Google Scholar 

  26. Mohsin A, Zhang K, Hu J, Salim-ur-Rehman T (2018) Optimized biosynthesis of xanthan via effective valorization of orange peels using response surface methodology: a kinetic model approach. Carbohyd Polym 181:793–800. https://doi.org/10.1016/j.carbpol.2017.11.076

    Article  CAS  Google Scholar 

  27. Zare-Akbari Z, Farhadnejad H, Furughi-Nia B, Abedin S, Yadollahi M, Khorsand-Ghayeni M (2016) pH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int J Biol Macromol 93:1317–1327. https://doi.org/10.1016/j.ijbiomac.2016.09.11

    Article  CAS  PubMed  Google Scholar 

  28. Rabipour M, Sekhavat Pour Z, Sahraei R et al (2020) pH-sensitive nanocomposite hydrogels based on poly(vinyl alcohol) macromonomer and graphene oxide for removal of cationic dyes from aqueous solutions. J Polym Environ 28:584–597. https://doi.org/10.1007/s10924-019-01625-6

    Article  CAS  Google Scholar 

  29. Zhou L, Zhao X, Li M, Yan L, Lu Y, Jiang C, Shi J (2021) Antibacterial and wound healing–promoting effect of sponge-like chitosan-loaded silver nanoparticles biosynthesized by iturin. Int J Biol Macromol 181:1183–1195. https://doi.org/10.1016/j.ijbiomac.2021.04.11

    Article  CAS  PubMed  Google Scholar 

  30. Rodrigues C, de Mello JMM, Dalcanton F et al (2020) Mechanical, thermal and antimicrobial properties of chitosan-based-nanocomposite with potential applications for food packaging. J Polym Environ 28:1216–1236. https://doi.org/10.1007/s10924-020-01678-y

    Article  CAS  Google Scholar 

  31. Anvar AA, Ahari H, Ataee M (2021) Antimicrobial properties of food nanopackaging: a new focus on foodborne pathogens. Front Microbiol. https://doi.org/10.3389/fmicb.2021.690706

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gu B, Jiang Q, Luo B, Liu C, Ren J, Wang X, Wang X (2021) A sandwich-like chitosan-based antibacterial nanocomposite film with reduced graphene oxide immobilized silver nanoparticles. Carbohydr Polym 260:117835. https://doi.org/10.1016/j.carbpol.2021.117835

    Article  CAS  PubMed  Google Scholar 

  33. Husain FM, Hasan I, Qais FA, Khan RA, Alam P, Alsalme A (2020) Fabrication of zinc oxide-xanthan gum nanocomposite via green route: attenuation of quorum sensing regulated virulence functions and mitigation of biofilm in gram-negative bacterial pathogens. Coatings 10(12):1190. https://doi.org/10.3390/coatings10121190

    Article  CAS  Google Scholar 

  34. Tian L, Singh A, Singh AV (2020) Synthesis and characterization of pectin-chitosan conjugate for biomedical application. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.02.313

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mondal MIH, Saha J (2019) Antimicrobial, UV resistant and thermal comfort properties of chitosan- and aloe vera-modified cotton woven fabric. J Polym Environ 27:405–420. https://doi.org/10.1007/s10924-018-1354-9

    Article  CAS  Google Scholar 

  36. Wang Y, Yi S, Lu R, Sameen DE, Ahmed S, Dai J, Liu Y (2020) Preparation, characterization, and 3D printing verification of chitosan/halloysite nanotubes/tea polyphenol nanocomposite films. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.09.253

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alizadeh-Sani M, MoghaddasKia E, Ghasempour Z, Ehsani A (2020) Preparation of active nanocomposite film consisting of sodium caseinate, ZnO nanoparticles and rosemary essential oil for food packaging applications. J Polym Environ. https://doi.org/10.1007/s10924-020-01906-5

    Article  Google Scholar 

  38. Nazarzadeh Zare E, Mansour Lakouraj M, Mohseni M (2014) Biodegradable polypyrrole/dextrin conductive nanocomposite: synthesis, characterization, antioxidant and antibacterial activity. Synth Met 187:9–16. https://doi.org/10.1016/j.synthmet.2013.09.04

    Article  CAS  Google Scholar 

  39. Bagheri R, Ariaii P, Motamedzadegan A (2020) Characterization, antioxidant and antibacterial activities of chitosan nanoparticles loaded with nettle essential oil. J Food Meas Charact. https://doi.org/10.1007/s11694-020-00738-0

    Article  Google Scholar 

  40. Hadidi M, Pouramin S, Adinepour F, Haghani S, Mahdi Jafari S (2020) Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116075

    Article  PubMed  Google Scholar 

  41. Khaldia S, Lamia B, Yasmina K, Lahcene B (2020) Preparation, characterization and antioxidant activity of microspheres based of cellulose triacetate CTA to control the release of vitamin C. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6378

    Article  Google Scholar 

  42. Sherafatkhah Azari S, Alizadeh A, Roufegarinejad L, Asefi N, Hamishehkar H (2020) Preparation and characterization of gelatin/β-glucan nanocomposite film incorporated with ZnO nanoparticles as an active food packaging system. J Polym Environ. https://doi.org/10.1007/s10924-020-01950-1

    Article  Google Scholar 

  43. Yadollahi M, Farhoudian S, Barkhordari S, Gholamali I, Farhadnejad H, Motasadizadeh H (2016) Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 82:273–278. https://doi.org/10.1016/j.ijbiomac.2015.09.06

    Article  CAS  PubMed  Google Scholar 

  44. Pan J, Zhang Z, Zhan Z, Xiong Y, Wang Y, Cao K, Chen Y (2020) In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan. Carbohydr Polym 242:116391. https://doi.org/10.1016/j.carbpol.2020.116391

    Article  CAS  PubMed  Google Scholar 

  45. Tantiwatcharothai S, Prachayawarakorn J (2019) Property improvement of antibacterial wound dressing from basil seed (O. basilicum L.) mucilage-ZnO nanocomposite by borax crosslinking. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115360

    Article  PubMed  Google Scholar 

  46. Khan AU, Khan AU, Li B, Mahnashi MH, Alyami BA, Alqahtani YS, Ahmad W (2021) Biosynthesis of silver capped magnesium oxide nanocomposite using Olea cuspidata leaf extract and their photocatalytic, antioxidant and antibacterial activity. Photodiagn Photodyn Ther 33:102153. https://doi.org/10.1016/j.pdpdt.2020.102153

    Article  CAS  Google Scholar 

  47. Maroufi LY, Tabibiazar M, Ghorbani M, Jahanban-Esfahlan A (2021) Fabrication and characterization of novel antibacterial chitosan/dialdehyde guar gum hydrogels containing pomegranate peel extract for active food packaging application. Int J Biol Macromol 187:179–188. https://doi.org/10.1016/j.ijbiomac.2021.07.12

    Article  CAS  PubMed  Google Scholar 

  48. Choudhary P, Ramalingam B, Das SK (2020) Fabrication of chitosan reinforced multifunctional graphene nanocomposite as antibacterial scaffolds for hemorrhage control and wound healing application. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.0c009

    Article  PubMed  Google Scholar 

  49. Saedi S, Shokri M, Rhim J-W (2020) Preparation of carrageenan-based nanocomposite films incorporated with functionalized halloysite using AgNP and sodium dodecyl sulfate. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2020.105934

    Article  Google Scholar 

  50. Ramos M, Beltran A, Fortunati E, Peltzer MA, Cristofaro F, Visai L, Garrigós MC (2020) Controlled release of thymol from poly (lactic acid)-based silver nanocomposite films with antibacterial and antioxidant activity. Antioxidants 9(5):395. https://doi.org/10.3390/antiox9050395

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the DST-FIST (fund for the improvement of S&T infrastructure) for financial assistance to the Department of Chemistry, SRM-IST, No. SR/FST/CST-266/ 2015(c). The authors also thank the Nanotechnology Research Centre (NRC), SRM-IST, for providing the research facilities and SRM-IST for providing the supercomputing facility and financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devikala Sundaramurthy.

Ethics declarations

Conflict of interest

We wish to state that there is no potential declaration of interest and hereby declare that this article has been neither copyrighted, classified, published, nor is being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1902 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panneerselvam, N., Sundaramurthy, D. & Maruthapillai, A. Antibacterial/Antioxidant Activity of CuO Impacted Xanthan Gum/Chitosan @Ascorbic Acid Nanocomposite Films. J Polym Environ 30, 3239–3249 (2022). https://doi.org/10.1007/s10924-022-02429-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02429-x

Keywords

Navigation