Skip to main content

Advertisement

Log in

Natural antimicrobial and antioxidant compounds for active food packaging applications

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Food needs a step ahead technology to store food fresh and safe for a more extended period. At the same time, ecological awareness and consumers’ demand for safe food and quality products have led us to explore emerging food preservation techniques, including active food packaging. Antioxidant and antimicrobial are emerging practices in the active packaging segment. The chemical additives adversely affected the food and were not economical for commercial production. The active packaging with natural additives such as natural antioxidants and antimicrobial agents could bring a sustainable solution to this concern. Plant (herbs, spices), animals, mushrooms, enzymes, and microorganisms are considered the natural active component’s reservoirs. The active compounds from natural sources were recently utilized to develop active packaging materials. Here we reviewed various natural sources as an antioxidant and antimicrobial compounds for food packaging application. We present the mechanism of active compounds methods of incorporation of active compounds into packaging. Further, we discussed the food packaging applications and challenges in the utilization of natural antioxidant and antimicrobial compounds for food packaging industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mir SA, Dar BN, Wani AA, Shah MA (2018) Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends Food Sci Technol 80:141–154. https://doi.org/10.1016/J.TIFS.2018.08.004

    Article  Google Scholar 

  2. Attaran SA, Hassan A, Wahit MU (2017) Materials for food packaging applications based on bio-based polymer nanocomposites: A review. J Thermoplast Compos Mater 30:143–173. https://doi.org/10.1177/2F0892705715588801

    Article  Google Scholar 

  3. Piergiovanni L, Limbo S (2016) Food packaging materials. Springer. https://doi.org/10.1007/978-3-319-24732-8

    Article  Google Scholar 

  4. Shaikh S, Yaqoob M, Aggarwal P (2021) An overview of biodegradable packaging in food industry. Curr Res Food Sci 4:503–520. https://doi.org/10.1016/j.crfs.2021.07.005

    Article  Google Scholar 

  5. Aryan Y, Yadav P, Samadder SR (2019) Life Cycle Assessment of the existing and proposed plastic waste management options in India: A case study. J Clean Prod 211:1268–1283. https://doi.org/10.1016/j.jclepro.2018.11.236

    Article  Google Scholar 

  6. Luckachan GE, Pillai CKS (2011) Biodegradable polymers-a review on recent trends and emerging perspectives. J Polym Environ 19:637–676. https://doi.org/10.1007/s10924-011-0317-1

    Article  Google Scholar 

  7. ASTM D (2004) 6400–04 Standard specification for compostable plastics. J ASTM Int, West Conshohocken, PA.

  8. Li J-H, Miao J, Wu J-L et al (2014) Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocoll 37:166–173. https://doi.org/10.1016/j.foodhyd.2013.10.015

    Article  Google Scholar 

  9. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24:770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003

    Article  Google Scholar 

  10. Guarda A, Rubilar JF, Miltz J, Galotto MJ (2011) The antimicrobial activity of microencapsulated thymol and carvacrol. Int J Food Microbiol 146:144–150. https://doi.org/10.1016/j.ijfoodmicro.2011.02.011

    Article  Google Scholar 

  11. Ganiari S, Choulitoudi E, Oreopoulou V (2017) Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci Technol 68:70–82. https://doi.org/10.1016/j.tifs.2017.08.009

    Article  Google Scholar 

  12. Tiwari BK, Valdramidis VP, O’Donnell CP et al (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57:5987–6000. https://doi.org/10.1021/jf900668n

    Article  Google Scholar 

  13. Oroian M, Escriche I (2015) Antioxidants: Characterization, natural sources, extraction and analysis. Food Res Int 74:10–36. https://doi.org/10.1016/j.foodres.2015.04.018

    Article  Google Scholar 

  14. Barbosa-Pereira L, Cruz JM, Sendón R et al (2013) Development of antioxidant active films containing tocopherols to extend the shelf life of fish. Food Control 31:236–243. https://doi.org/10.1016/j.foodcont.2012.09.036

    Article  Google Scholar 

  15. Gómez-Estaca J, López-de-Dicastillo C, Hernández-Muñoz P et al (2014) Advances in antioxidant active food packaging. Trends Food Sci Technol 35:42–51. https://doi.org/10.1016/j.tifs.2013.10.008

    Article  Google Scholar 

  16. Adámez JD, Samino EG, Sánchez EV, González-Gómez D (2012) In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control 24:136–141. https://doi.org/10.1016/j.foodcont.2011.09.016

    Article  Google Scholar 

  17. Ziogas V, Tanou G, Molassiotis A et al (2010) Antioxidant and free radical-scavenging activities of phenolic extracts of olive fruits. Food Chem 120:1097–1103. https://doi.org/10.1016/j.foodchem.2009.11.058

    Article  Google Scholar 

  18. Martillanes S, Rocha-Pimienta J, Cabrera-Bañegil M, et al (2017) Application of phenolic compounds for food preservation: Food additive and active packaging. Phenolic Compd Act London, UK IntechOpen 39–58https://doi.org/10.5772/66885

  19. Butsat S, Siriamornpun S (2010) Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem 119:606–613. https://doi.org/10.1016/j.foodchem.2009.07.001

    Article  Google Scholar 

  20. Zielinski AAF, Haminiuk CWI, Alberti A et al (2014) A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res Int 60:246–254. https://doi.org/10.1016/j.foodres.2013.09.010

    Article  Google Scholar 

  21. Carlsen MH, Halvorsen BL, Holte K et al (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9:1–11. https://doi.org/10.1186/1475-2891-9-3

    Article  Google Scholar 

  22. Lu X, Li N, Qiao X et al (2017) Composition analysis and antioxidant properties of black garlic extract. J food drug Anal 25:340–349. https://doi.org/10.1016/j.jfda.2016.05.011

    Article  Google Scholar 

  23. Balboa EM, Conde E, Moure A et al (2013) In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138:1764–1785. https://doi.org/10.1016/j.foodchem.2012.11.026

    Article  Google Scholar 

  24. Lü J, Lin PH, Yao Q, Chen C (2010) Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med 14:840–860. https://doi.org/10.1111/j.1582-4934.2009.00897.x

    Article  Google Scholar 

  25. Lee DS (2014) Antioxidative packaging system. In: Innovations in food packaging. Elsevier 111–131. https://doi.org/10.1016/B978-0-12-394601-0.00006-0

  26. Cooksey K (2005) Effectiveness of antimicrobial food packaging materials. Food Addit Contam 22:980–987. https://doi.org/10.1080/02652030500246164

    Article  Google Scholar 

  27. Taghvaei M, Jafari SM (2015) Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J Food Sci Technol 52:1272–1282. https://doi.org/10.1007/s13197-013-1080-1

    Article  Google Scholar 

  28. Iheaturu NC, Nwakaudu AA, Nwakaudu MS, Owuamanam CI (2018) The use of natural antioxidant active polymer packaging for food preservation: A review. Futo J Ser 4:94–112

    Google Scholar 

  29. Choe E, Min DB (2006) Mechanisms and factors for edible oil oxidation. Compr Rev food Sci food Saf 5:169–186. https://doi.org/10.1111/j.1541-4337.2006.00009.x

    Article  Google Scholar 

  30. Ligon SC, Husár B, Wutzel H et al (2014) Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem Rev 114:557–589. https://doi.org/10.1021/cr3005197

    Article  Google Scholar 

  31. Zhou L, Elias RJ (2013) Understanding antioxidant and prooxidant mechanisms of phenolics in food lipids. In: Lipid Oxidation. Elsevier 297–321. https://doi.org/10.1016/B978-0-9830791-6-3.50012-6

  32. Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199–1218. https://doi.org/10.1016/j.foodcont.2010.02.003

    Article  Google Scholar 

  33. Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O (2008) Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int J Food Microbiol 121:313–327. https://doi.org/10.1016/j.ijfoodmicro.2007.11.010

    Article  Google Scholar 

  34. Careaga M, Fernández E, Dorantes L et al (2003) Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. Int J Food Microbiol 83:331–335. https://doi.org/10.1016/S0168-1605(02)00382-3

    Article  Google Scholar 

  35. Tornuk F, Cankurt H, Ozturk I et al (2011) Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157: H7 and Salmonella Typhimurium on fresh cut carrots and apples. Int J Food Microbiol 148:30–35. https://doi.org/10.1016/j.ijfoodmicro.2011.04.022

    Article  Google Scholar 

  36. Zaika LL (1988) Spices and herbs: their antimicrobial activity and its determination 1. J Food Saf 9:97–118. https://doi.org/10.1111/j.1745-4565.1988.tb00511.x

    Article  Google Scholar 

  37. Witkowska AM, Hickey DK, Alonso-Gomez M, Wilkinson M (2013) Evaluation of antimicrobial activities of commercial herb and spice extracts against selected foodborne bacteria. J Food Res 2:37. https://doi.org/10.5539/jfr.v2n4p37

    Article  Google Scholar 

  38. Al-Sum BA, Al-Arfaj AA (2013) Antimicrobial activity of the aqueous extract of mint plant. Sci J Clin Med 2:110–113

    Article  Google Scholar 

  39. Lee S-Y, Gwon S-Y, Kim S-J, Moon BK (2009) Inhibitory effect of commercial green tea and rosemary leaf powders on the growth of foodborne pathogens in laboratory media and oriental-style rice cakes. J Food Prot 72:1107–1111. https://doi.org/10.4315/0362-028X-72.5.1107

    Article  Google Scholar 

  40. Kong B, Wang J, Xiong YL (2007) Antimicrobial activity of several herb and spice extracts in culture medium and in vacuum-packaged pork. J Food Prot 70:641–647. https://doi.org/10.4315/0362-028X-70.3.641

    Article  Google Scholar 

  41. Fernandez-Lopez J, Zhi N, Aleson-Carbonell L et al (2005) Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci 69:371–380. https://doi.org/10.1016/j.meatsci.2004.08.004

    Article  Google Scholar 

  42. Han JH (2005) Antimicrobial packaging systems. In: Innovations in food packaging. Elsevier. 80–107. https://doi.org/10.1016/B978-0-12-311632-1.X5031-1

  43. Yildirim S, Röcker B, Pettersen MK et al (2018) Active packaging applications for food. Compr Rev Food Sci Food Saf 17:165–199. https://doi.org/10.1111/1541-4337.12322

    Article  Google Scholar 

  44. Sung S-Y, Sin LT, Tee T-T et al (2013) Antimicrobial agents for food packaging applications. Trends Food Sci Technol 33:110–123. https://doi.org/10.1016/j.tifs.2013.08.001

    Article  Google Scholar 

  45. Sofi SA, Singh J, Rafiq S et al (2018) A comprehensive review on antimicrobial packaging and its use in food packaging. Curr Nutr Food Sci 14:305–312. https://doi.org/10.2174/1573401313666170609095732

    Article  Google Scholar 

  46. Xue J, Davidson PM, Zhong Q (2013) Thymol nanoemulsified by whey protein-maltodextrin conjugates: The enhanced emulsifying capacity and antilisterial properties in milk by propylene glycol. J Agric Food Chem 61:12720–12726

    Article  Google Scholar 

  47. Moleyar V, Narasimham P (1986) Antifungal activity of some essential oil components. Food Microbiol 3:331–336

    Article  Google Scholar 

  48. Dorman H, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316. https://doi.org/10.1046/j.1365-2672.2000.00969.x

    Article  Google Scholar 

  49. Juven BJ, Kanner J, Schved F, Weisslowicz H (1994) Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol 76:626–631. https://doi.org/10.1111/j.1365-2672.1994.tb01661.x

    Article  Google Scholar 

  50. Bajpai VK, Rahman A, Dung NT et al (2008) In vitro inhibition of food spoilage and foodborne pathogenic bacteria by essential oil and leaf extracts of Magnolia liliflora Desr. J Food Sci 73:M314–M320. https://doi.org/10.1111/j.1750-3841.2008.00841.x

    Article  Google Scholar 

  51. Delaquis PJ, Mazza G (1995) Antimicrobial properties of isothiocyanates in food preservation. Food Technol 49:73–84

    Google Scholar 

  52. Helander IM, Alakomi H-L, Latva-Kala K et al (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 46:3590–3595. https://doi.org/10.1021/jf980154m

    Article  Google Scholar 

  53. Conner DE, Beuchat LR (1984) Sensitivity of heat-stressed yeasts to essential oils of plants. Appl Environ Microbiol 47:229–233. https://doi.org/10.1128/aem.47.2.229-233.1984

    Article  Google Scholar 

  54. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  Google Scholar 

  55. Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:12. https://doi.org/10.3389/fmicb.2012.00012

    Article  Google Scholar 

  56. Falleh H, Ben JM, Saada M, Ksouri R (2020) Essential oils: A promising eco-friendly food preservative. Food Chem 330:127268. https://doi.org/10.1016/j.foodchem.2020.127268

    Article  Google Scholar 

  57. Mohamed SAA, El-Sakhawy M, El-Sakhawy MA-M (2020) Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydr Polym 238:116178. https://doi.org/10.1016/j.carbpol.2020.116178

    Article  Google Scholar 

  58. Asgher M, Qamar SA, Bilal M, Iqbal HMN (2020) Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int 137:109625. https://doi.org/10.1016/J.FOODRES.2020.109625

    Article  Google Scholar 

  59. Buendía L, Soto S, Ros M et al (2019) Innovative cardboard active packaging with a coating including encapsulated essential oils to extend cherry tomato shelf life. LWT 116:108584. https://doi.org/10.1016/j.lwt.2019.108584

    Article  Google Scholar 

  60. Pinto T, Aires A, Cosme F et al (2021) Bioactive (Poly) phenols, Volatile Compounds from Vegetables. Medicinal and Aromatic Plants Foods 10:106. https://doi.org/10.3390/foods10010106

    Article  Google Scholar 

  61. Ali A, Chen Y, Liu H et al (2019) Starch-based antimicrobial films functionalized by pomegranate peel. Int J Biol Macromol 129:1120–1126. https://doi.org/10.1016/j.ijbiomac.2018.09.068

    Article  Google Scholar 

  62. Sultana A, Kathuria A, Gaikwad KK (2022) Metal-organic frameworks for active food packaging. A review. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01387-z

  63. Elliott M, Chithan K (2017) The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer. In: The flavonoids. Routledge. 619–652. https://doi.org/10.1201/9780203736692

  64. Przybyłek I, Karpiński TM (2019) Antibacterial properties of propolis. Molecules 24:2047. https://doi.org/10.3390/molecules24112047

    Article  Google Scholar 

  65. Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32:1141–1148. https://doi.org/10.1016/0006-2952(83)90262-9

    Article  Google Scholar 

  66. Harborne JB, Baxter H (1999) The handbook of natural flavonoids. Volume 1 and Volume 2. John Wiley and Sons.

  67. Bueno JM, Ramos-Escudero F, Saez-Plaza P et al (2012) Analysis and antioxidant capacity of anthocyanin pigments. Part I: General considerations concerning polyphenols and flavonoids. Crit Rev Anal Chem 42:102–125

    Article  Google Scholar 

  68. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883. https://doi.org/10.1016/0031-9422(91)83426-L

    Article  Google Scholar 

  69. Chung K-T, Wong TY, Wei C-I et al (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464. https://doi.org/10.1080/10408699891274273

    Article  Google Scholar 

  70. Molino S, Casanova NA, Rufián Henares JA, Fernandez Miyakawa ME (2019) Natural tannin wood extracts as a potential food ingredient in the food industry. J Agric Food Chem 68:2836–2848. https://doi.org/10.1021/acs.jafc.9b00590

    Article  Google Scholar 

  71. Costabile A, Sanghi S, Martin-Pelaez S et al (2011) Inhibition of Salmonella Typhimurium by tannins in vitro. J Food Agric Env 9:119–124

    Google Scholar 

  72. Taguri T, Tanaka T, Kouno I (2004) Antimicrobial activity of 10 different plant polyphenols against bacteria causing foodborne disease. Biol Pharm Bull 27:1965–1969. https://doi.org/10.1248/bpb.27.1965

    Article  Google Scholar 

  73. Sung SH, Kim KH, Jeon BT et al (2012) Antibacterial and antioxidant activities of tannins extracted from agricultural by-products. J Med Plants Res 6:3072–3079. https://doi.org/10.5897/JMPR11.1575

    Article  Google Scholar 

  74. López de Dicastillo C, Nerín C, Alfaro P et al (2011) Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract. J Agric Food Chem 59:7832–7840. https://doi.org/10.1021/jf201246g

    Article  Google Scholar 

  75. García DE, Carrasco JC, Salazar JP, et al (2016) Bark polyflavonoids from Pinus radiata as functional building-blocks for polylactic acid (PLA)-based green composites. Express Polym Lett 10https://doi.org/10.3144/expresspolymlett.2016.78

  76. Zhai Y, Wang J, Wang H et al (2018) Preparation and characterization of antioxidative and UV-protective larch bark tannin/PVA composite membranes. Molecules 23:2073. https://doi.org/10.3390/molecules23082073

    Article  Google Scholar 

  77. Bouarab Chibane L, Degraeve P, Ferhout H et al (2019) Plant antimicrobial polyphenols as potential natural food preservatives. J Sci Food Agric 99:1457–1474. https://doi.org/10.1002/jsfa.9357

    Article  Google Scholar 

  78. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582. https://doi.org/10.1128/CMR.12.4.564

    Article  Google Scholar 

  79. Kuete V, Alibert-Franco S, Eyong KO et al (2011) Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int J Antimicrob Agents 37:156–161. https://doi.org/10.1016/j.ijantimicag.2010.10.020

    Article  Google Scholar 

  80. Ojala T, Remes S, Haansuu P et al (2000) Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 73:299–305. https://doi.org/10.1016/S0378-8741(00)00279-8

    Article  Google Scholar 

  81. Benbettaïeb N, Chambin O, Assifaoui A et al (2016) Release of coumarin incorporated into chitosan-gelatin irradiated films. Food Hydrocoll 56:266–276. https://doi.org/10.1016/j.foodhyd.2015.12.026

    Article  Google Scholar 

  82. Brody AL, Budny JA (1995) Enzymes as active packaging agents. In: Active food packaging. Springer. 174–192. https://doi.org/10.1007/978-1-4615-2175-4_7

  83. Meyer AS, Isaksen A (1995) Application of enzymes as food antioxidants. Trends Food Sci Technol 6:300–304. https://doi.org/10.1016/S0924-2244(00)89140-2

    Article  Google Scholar 

  84. Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575. https://doi.org/10.1016/j.tifs.2006.04.012

    Article  Google Scholar 

  85. Savadogo A, Ouattara ATC, Bassole HNI, Traore SA (2006) Bacteriocins and lactic acid bacteria-a minireview. African J Biotechnol 5https://doi.org/10.5897/AJB05.388

  86. Müller-Auffermann K, Grijalva F, Jacob F, Hutzler M (2015) Nisin and its usage in breweries: a review and discussion. J Inst Brew 121:309–319. https://doi.org/10.1002/jib.233

    Article  Google Scholar 

  87. Huang E, Hussein WE, Campbell EP, Yousef AE (2021) Applications in food technology: antimicrobial peptides. In: Biologically Active Peptides. Elsevier. 745–770. https://doi.org/10.1016/B978-0-12-821389-6.00006-6

  88. Johnsen L, Fimland G, Nissen-Meyer J (2005) The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem 280:9243–9250. https://doi.org/10.1074/jbc.M412712200

    Article  Google Scholar 

  89. Montville TJ, Chen Y (1998) Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Appl Microbiol Biotechnol 50:511–519. https://doi.org/10.1007/s002530051328

    Article  Google Scholar 

  90. Espitia PJP, Pacheco JJR, de Melo NR et al (2013) Packaging properties and control of Listeria monocytogenes in bologna by cellulosic films incorporated with pediocin. Brazilian J Food Technol 16:226–235. https://doi.org/10.1590/S1981-67232013005000028

    Article  Google Scholar 

  91. Espitia PJP, de Soares N, FF, Teófilo RF, et al (2013) Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr Polym 94:199–208. https://doi.org/10.1016/j.foodhyd.2013.06.005

    Article  Google Scholar 

  92. Arqués JL, Fernández J, Gaya P et al (2004) Antimicrobial activity of reuterin in combination with nisin against foodborne pathogens. Int J Food Microbiol 95:225–229. https://doi.org/10.1016/j.ijfoodmicro.2004.03.009

    Article  Google Scholar 

  93. Hernández-Carrillo JG, Orta-Zavalza E, González-Rodríguez SE et al (2021) Evaluation of the effectivity of reuterin in pectin edible coatings to extend the shelf-life of strawberries during cold storage. Food Packag Shelf Life 30:100760. https://doi.org/10.1016/j.fpsl.2021.100760

    Article  Google Scholar 

  94. Schaefer L, Auchtung TA, Hermans KE et al (2010) The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 156:1589. https://doi.org/10.1099/2Fmic.0.035642-0

    Article  Google Scholar 

  95. Vollenweider S, Lacroix C (2004) 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl Microbiol Biotechnol 64:16–27. https://doi.org/10.1007/s00253-003-1497-y

    Article  Google Scholar 

  96. Asare PT, Greppi A, Stettler M et al (2018) Decontamination of minimally-processed fresh lettuce using reuterin produced by Lactobacillus reuteri. Front Microbiol 9:1421. https://doi.org/10.3389/fmicb.2018.01421

    Article  Google Scholar 

  97. Kutter E, Sulakvelidze A (2004) Bacteriophages: biology and applications. Crc press. https://doi.org/10.1201/9780203491751

    Article  Google Scholar 

  98. Fiorentin L, Vieira ND, Barioni W Jr (2005) Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol 34:258–263. https://doi.org/10.1080/01445340500112157

    Article  Google Scholar 

  99. Raya RR, Varey P, Oot RA et al (2006) Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157: H7 levels in sheep. Appl Environ Microbiol 72:6405–6410. https://doi.org/10.1128/AEM.03011-05

    Article  Google Scholar 

  100. Theron MM, Lues JFR (2010) Organic acids and food preservation. CRC Press. https://doi.org/10.1201/9781420078435

    Article  Google Scholar 

  101. Hsiao C-P, Siebert KJ (1999) Modeling the inhibitory effects of organic acids on bacteria. Int J Food Microbiol 47:189–201. https://doi.org/10.1016/S0168-1605(99)00012-4

    Article  Google Scholar 

  102. Hauser C, Thielmann J, Muranyi P (2016) Organic acids: Usage and potential in antimicrobial packaging. In: Antimicrobial food packaging. Elsevier.563–580. https://doi.org/10.1016/B978-0-12-800723-5.00046-2

  103. Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40:175–181. https://doi.org/10.1016/j.ijbiomac.2006.06.021

    Article  Google Scholar 

  104. Möller H, Grelier S, Pardon P, Coma V (2004) Antimicrobial and physicochemical properties of chitosan− hpmc-based films. J Agric Food Chem 52:6585–6591. https://doi.org/10.1021/jf0306690

    Article  Google Scholar 

  105. Krajewska B (2004) Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139. https://doi.org/10.1016/j.enzmictec.2003.12.013

    Article  Google Scholar 

  106. Tripathi S, Mehrotra GK, Tripathi CKM et al (2008) Chitosan based bioactive film: Functional properties towards biotechnological needs. Asian chitin J 4:29–36

    Google Scholar 

  107. Wu T, Jiang Q, Wu D et al (2019) What is new in lysozyme research and its application in food industry? A review. Food Chem 274:698–709. https://doi.org/10.1016/j.foodchem.2018.09.017

    Article  Google Scholar 

  108. Administration F and D (2015) Direct food substances affirmed as generally recognized as safe. Food Drug Adm 417–418

  109. Barbiroli A, Bonomi F, Capretti G et al (2012) Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control 26:387–392. https://doi.org/10.1016/j.foodcont.2012.01.046

    Article  Google Scholar 

  110. Conte A, Buonocore GG, Sinigaglia M, Del Nobile MA (2007) Development of immobilized lysozyme based active film. J Food Eng 78:741–745. https://doi.org/10.1016/j.jfoodeng.2005.11.013

    Article  Google Scholar 

  111. Appendini P, Hotchkiss JH (1997) Immobilization of lysozyme on food contact polymers as potential antimicrobial films. Packag Technol Sci An Int J 10:271–279. https://doi.org/10.1002/(SICI)1099-1522(199709/10)10:5/3C271::AID-PTS412/3E3.0.CO;2-R

    Article  Google Scholar 

  112. Niaz B, Saeed F, Ahmed A et al (2019) Lactoferrin (LF): a natural antimicrobial protein. Int J Food Prop 22:1626–1641. https://doi.org/10.1080/10942912.2019.1666137

    Article  Google Scholar 

  113. Jenssen H, Hancock REW (2009) Antimicrobial properties of lactoferrin. Biochimie 91:19–29. https://doi.org/10.1016/j.biochi.2008.05.015

    Article  Google Scholar 

  114. Al-Nabulsi AA, Han JH, Liu Z et al (2006) Temperature-sensitive microcapsules containing lactoferrin and their action against Carnobacterium viridans on bologna. J Food Sci 71:M208–M214. https://doi.org/10.1111/j.1750-3841.2006.00103.x

    Article  Google Scholar 

  115. Bafort F, Parisi O, Perraudin J-P, Jijakli MH (2014) Mode of action of lactoperoxidase as related to its antimicrobial activity: a review. Enzyme Res 2014https://doi.org/10.1155/2014/517164

  116. Yener FYG, Korel F, Yemenicioğlu A (2009) Antimicrobial activity of lactoperoxidase system incorporated into cross-linked alginate films. J Food Sci 74:M73–M79. https://doi.org/10.1111/j.1750-3841.2009.01057.x

    Article  Google Scholar 

  117. Min S, Krochta JM (2005) Inhibition of Penicillium commune by edible whey protein films incorporating lactoferrin, lacto-ferrin hydrolysate, and lactoperoxidase systems. J Food Sci 70:M87–M94. https://doi.org/10.1111/j.1365-2621.2005.tb07108.x

    Article  Google Scholar 

  118. Nadarajah D, Han JH, Holley RA (2005) Inactivation of Escherichia coli O157: H7 in packaged ground beef by allyl isothiocyanate. Int J Food Microbiol 99:269–279. https://doi.org/10.1016/j.ijfoodmicro.2004.08.019

    Article  Google Scholar 

  119. Otoni CG, Espitia PJP, Avena-Bustillos RJ, McHugh TH (2016) Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res Int 83:60–73

    Article  Google Scholar 

  120. Smith JP, Hoshino J, Abe Y (1995) Interactive packaging involving sachet technology. In: Active food packaging. Springer. 143–173. https://doi.org/10.1007/978-1-4615-2175-4_6

  121. Khan A, Vu KD, Riedl B, Lacroix M (2015) Optimization of the antimicrobial activity of nisin, Na-EDTA and pH against gram-negative and gram-positive bacteria. LWT-Food Sci Technol 61:124–129. https://doi.org/10.1016/j.lwt.2014.11.035

    Article  Google Scholar 

  122. Gasti T, Dixit S, Hiremani VD et al (2022) Chitosan/pullulan based films incorporated with clove essential oil loaded chitosan-ZnO hybrid nanoparticles for active food packaging. Carbohydr Polym 277:118866. https://doi.org/10.1016/j.carbpol.2021.118866

    Article  Google Scholar 

  123. Lian H, Shi J, Zhang X, Peng Y (2020) Effect of the added polysaccharide on the release of thyme essential oil and structure properties of chitosan based film. Food Packag Shelf Life 23:100467. https://doi.org/10.1016/j.fpsl.2020.100467

    Article  Google Scholar 

  124. Azadbakht E, Maghsoudlou Y, Khomiri M, Kashiri M (2018) Development and structural characterization of chitosan films containing Eucalyptus globulus essential oil: Potential as an antimicrobial carrier for packaging of sliced sausage. Food Packag shelf life 17:65–72. https://doi.org/10.1016/j.fpsl.2018.03.007

    Article  Google Scholar 

  125. Aloui H, Khwaldia K (2016) Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Compr Rev Food Sci Food Saf 15:1080–1103. https://doi.org/10.1111/1541-4337.12226

    Article  Google Scholar 

  126. Perez-Perez C, Regalado-González C, Rodríguez-Rodríguez CA, et al (2006) Incorporation of antimicrobial agents in food packaging films and coatings. Adv Agric food Biotechnol 193–216

  127. Tavassoli-Kafrani E, Gamage MV, Dumée LF, et al (2020) Edible films and coatings for shelf life extension of mango: a review. Crit Rev Food Sci Nutr 1–29https://doi.org/10.1080/10408398.2020.1853038

  128. Manzoor S, Gull A, Wani SM et al (2021) Improving the shelf life of fresh cut kiwi using nanoemulsion coatings with antioxidant and antimicrobial agents. Food Biosci 41:101015. https://doi.org/10.1016/j.fbio.2021.101015

    Article  Google Scholar 

  129. Rupasinghe HPV, Boulter-Bitzer J, Ahn T, Odumeru JA (2006) Vanillin inhibits pathogenic and spoilage microorganisms in vitro and aerobic microbial growth in fresh-cut apples. Food Res Int 39:575–580. https://doi.org/10.1016/j.foodres.2005.11.005

    Article  Google Scholar 

  130. Tomadoni B, del Moreira MR, Pereda M, Ponce AG (2018) Gellan-based coatings incorporated with natural antimicrobials in fresh-cut strawberries: Microbiological and sensory evaluation through refrigerated storage. LWT 97(384–389):389. https://doi.org/10.1016/j.lwt.2018.07.029

    Article  Google Scholar 

  131. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126. https://doi.org/10.1016/S1466-8564(02)00012-7

    Article  Google Scholar 

  132. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782. https://doi.org/10.1016/j.progpolymsci.2011.02.003

    Article  Google Scholar 

  133. Xu FJ, Cai QJ, Li YL et al (2005) Covalent immobilization of glucose oxidase on well-defined poly (glycidyl methacrylate)− Si (111) hybrids from surface-initiated atom-transfer radical polymerization. Biomacromol 6:1012–1020. https://doi.org/10.1021/bm0493178

    Article  Google Scholar 

  134. Muriel-Galet V, Cerisuelo JP, López-Carballo G et al (2012) Development of antimicrobial films for microbiological control of packaged salad. Int J Food Microbiol 157:195–201. https://doi.org/10.1016/j.ijfoodmicro.2012.05.002

    Article  Google Scholar 

  135. Buonocore GG, Del Nobile MA, Panizza A et al (2003) A general approach to describe the antimicrobial agent release from highly swellable films intended for food packaging applications. J Control release 90:97–107. https://doi.org/10.1016/S0168-3659(03)00154-8

    Article  Google Scholar 

  136. Bodbodak S, Rafiee Z (2016) Recent trends in active packaging in fruits and vegetables. In: Eco-friendly technology for postharvest produce quality. Elsevier. 77–125. https://doi.org/10.1016/B978-0-12-804313-4.00003-7

  137. Erdogˇrul Ö, Şener H (2005) The contamination of various fruit and vegetable with Enterobius vermicularis, Ascaris eggs, Entamoeba histolyca cysts and Giardia cysts. Food Control 16:557–560. https://doi.org/10.1016/j.foodcont.2004.06.016

    Article  Google Scholar 

  138. Pérez-Gago MB, Palou L (2016) Antimicrobial packaging for fresh and fresh-cut fruits and vegetables. Fresh-Cut Fruits Veg 433–482

  139. Jung J, Zhao Y (2016) Antimicrobial packaging for fresh and minimally processed fruits and vegetables. In: Antimicrobial food packaging. Elsevier. 243–256. https://doi.org/10.1016/B978-0-12-800723-5.00018-8

  140. Janowicz M, Bry J (2019) An overview of fruit and vegetable edible packaging materials. 1–13. https://doi.org/10.1002/pts.2440

  141. Valdés A, Ramos M, Beltrán A et al (2017) State of the art of antimicrobial edible coatings for food packaging applications. Coatings 7:56. https://doi.org/10.3390/coatings7040056

    Article  Google Scholar 

  142. Nirmal NP, Benjakul S (2011) Retardation of quality changes of Pacific white shrimp by green tea extract treatment and modified atmosphere packaging during refrigerated storage. Int J Food Microbiol 149:247–253. https://doi.org/10.1016/j.ijfoodmicro.2011.07.002

    Article  Google Scholar 

  143. Mariutti LRB, Nogueira GC, Bragagnolo N (2011) Lipid and cholesterol oxidation in chicken meat are inhibited by sage but not by garlic. J Food Sci 76:C909–C915. https://doi.org/10.1111/j.1750-3841.2011.02274.x

    Article  Google Scholar 

  144. Dave D, Ghaly AE (2011) Meat spoilage mechanisms and preservation techniques: a critical review. Am J Agric Biol Sci 6:486–510. https://doi.org/10.3844/ajabssp.2011.486.510

    Article  Google Scholar 

  145. Ilyas RA, Sapuan SM, Megashah LN, et al (2021) Regulations for Food Packaging Materials. Bio‐based Packag Mater Environ Econ Asp 467–494

  146. Marone PA (2016) Food safety and regulatory concerns. In: Insects as sustainable food ingredients. Elsevier. 203–221. https://doi.org/10.1016/B978-0-12-802856-8.00007-7

  147. Regulation EC (2004) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. Off J Eur Union L 338:4–16

    Google Scholar 

  148. Kumar P, Tanwar R, Gupta V, Upadhyay A, Kumar A, Gaikwad KK (2021) Pineapple peel extract incorporated poly (vinyl alcohol)-corn starch film for active food packaging: Preparation, characterization and antioxidant activity. Int J Biol Macromol 187:223–231. https://doi.org/10.1016/j.ijbiomac.2021.07.136

    Article  Google Scholar 

  149. Tanwar R, Gupta V, Kumar P, Kumar A, Singh S, Gaikwad KK (2021) Development and characterization of PVA-starch incorporated with coconut shell extract and sepiolite clay as an antioxidant film for active food packaging applications. Int J Biol Macromol 185:451–461. https://doi.org/10.1016/j.ijbiomac.2021.06.179

    Article  Google Scholar 

  150. Han Y, Yu M, Wang L (2018) Preparation and characterization of antioxidant soy protein isolate films incorporating licorice residue extract. Food Hydrocoll 75:13–21. https://doi.org/10.1016/j.foodhyd.2017.09.020

    Article  Google Scholar 

  151. Arciello A, Panzella L, Dell’Olmo E, Abdalrazeq M, Moccia F, Gaglione R, Agustin-Salazar S, Napolitano A, Mariniello L, Giosafatto CVL (2021) Development and characterization of antimicrobial and antioxidant whey protein-based films functionalized with Pecan (Carya illinoinensis) nut shell extract. Food Packag Shelf Life 29:100710. https://doi.org/10.1016/j.fpsl.2021.100710

    Article  Google Scholar 

  152. Rambabu K, Bharath G, Banat F, Show PL, Cocoletzi HH (2019) Mango leaf extract incorporated chitosan antioxidant film for active food packaging. Int J Biol Macromol 126:1234–1243. https://doi.org/10.1016/j.ijbiomac.2018.12.196

    Article  Google Scholar 

  153. Cejudo-Bastante MJ, Cejudo-Bastante C, Cran MJ, Heredia FJ, Bigger SW (2020) Optical, structural, mechanical and thermal characterization of antioxidant ethylene vinyl alcohol copolymer films containing betalain-rich beetroot. Food Packag Shelf Life 24:100502. https://doi.org/10.1016/j.fpsl.2020.100502

    Article  Google Scholar 

  154. Ju A, Bin Song K (2020) Incorporation of yellow onion peel extract into the funoran-based biodegradable films as an antioxidant packaging material. Int. J. Food Sci Technol 55:1671–1678. https://doi.org/10.1111/ijfs.14436

    Article  Google Scholar 

  155. Wang X, Yong H, Gao L, Li L, Jin M, Liu J (2019) Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll 89:56–66. https://doi.org/10.1016/j.foodhyd.2018.10.019

    Article  Google Scholar 

  156. Hu X, Yuan L, Han L, Li S, Song L (2019) Characterization of antioxidant and antibacterial gelatin films incorporated with Ginkgo biloba extract. RSC Adv 9:27449–27454. https://doi.org/10.1039/C9RA05788A

    Article  Google Scholar 

  157. Liu T, Wang J, Chi F, Tan Z, Liu L (2020) Development and characterization of novel active chitosan films containing fennel and peppermint essential oils. Coatings 10:936. https://doi.org/10.3390/coatings10100936

    Article  Google Scholar 

  158. Martins C, Vilarinho F, Silva AS, Andrade M, Machado AV, Castilho MC, Sá A, Cunha A, Vaz MF, Ramos F (2018) Active polylactic acid film incorporated with green tea extract: Development, characterization and effectiveness. Ind Crops Prod 123:100–110. https://doi.org/10.1016/j.indcrop.2018.06.056

    Article  Google Scholar 

  159. Farhan A, Hani NM (2020) Active edible films based on semi-refined κ-carrageenan: Antioxidant and color properties and application in chicken breast packaging. Food Packag Shelf Life 24:100476. https://doi.org/10.1016/j.fpsl.2020.100476

    Article  Google Scholar 

  160. Yong H, Liu J, Qin Y, Bai R, Zhang X, Liu J (2019) Antioxidant and pH-sensitive films developed by incorporating purple and black rice extracts into chitosan matrix. Int J Biol Macromol 137:307–316. https://doi.org/10.1016/j.ijbiomac.2019.07.009

    Article  Google Scholar 

  161. Rodríguez GM, Sibaja JC, Espitia PJP, Otoni CG (2020) Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocoll 103:105630. https://doi.org/10.1016/j.foodhyd.2019.105630

    Article  Google Scholar 

  162. Ju A, Bin Song K (2019) Development of teff starch films containing camu-camu (Myrciaria dubia Mc. Vaugh) extract as an antioxidant packaging material. Ind Crops Prod 141:111737. https://doi.org/10.1016/j.indcrop.2019.111737

    Article  Google Scholar 

  163. Liu J, Yong H, Liu Y, Qin Y, Kan J, Liu J (2019) Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packag. Shelf Life. 22:100417. https://doi.org/10.1016/j.fpsl.2019.100417

    Article  Google Scholar 

  164. Han H-S, Bin Song K (2021) Antioxidant properties of watermelon (Citrullus lanatus) rind pectin films containing kiwifruit (Actinidia chinensis) peel extract and their application as chicken thigh packaging. Food Packag Shelf Life 28:100636. https://doi.org/10.1016/j.fpsl.2021.100636

    Article  Google Scholar 

  165. Qin Y, Liu Y, Zhang X, Liu J (2020) Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocoll 100:105410. https://doi.org/10.1016/j.foodhyd.2019.105410

    Article  Google Scholar 

  166. Lan W, Wang S, Zhang Z, Liang X, Liu X, Zhang J (2021) Development of red apple pomace extract/chitosan-based films reinforced by TiO2 nanoparticles as a multifunctional packaging material. Int J Biol Macromol 168:105–115. https://doi.org/10.1016/j.ijbiomac.2020.12.051

    Article  Google Scholar 

  167. Khalid S, Yu L, Feng M, Meng L, Bai Y, Ali A, Liu H, Chen L (2018) Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids, Food Packag. Shelf. Life 18:71–79. https://doi.org/10.1016/j.fpsl.2018.08.008

    Article  Google Scholar 

  168. Liu Y, Qin Y, Bai R, Zhang X, Yuan L, Liu J (2019) Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. Int J Biol Macromol 134:993–1001. https://doi.org/10.1016/j.ijbiomac.2019.05.175

    Article  Google Scholar 

  169. Roy S, Rhim J-W (2021) Antioxidant and antimicrobial poly (vinyl alcohol)-based films incorporated with grapefruit seed extract and curcumin. J Environ Chem Eng 9:104694. https://doi.org/10.1016/j.jece.2020.104694

    Article  Google Scholar 

  170. Wan Yahaya WA, Abu Yazid N, MohdAzman NA, Almajano MP (2019) Antioxidant activities and Total phenolic content of Malaysian herbs as components of active packaging film in beef patties. Antioxidants. 8:204. https://doi.org/10.3390/antiox8070204

    Article  Google Scholar 

  171. Jamróz E, Kulawik P, Krzyściak P, Talaga-Ćwiertnia K, Juszczak L (2019) Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. Int J Biol Macromol 122:745–757. https://doi.org/10.1016/j.ijbiomac.2018.11.008

    Article  Google Scholar 

  172. Riaz A, Lagnika C, Luo H, Dai Z, Nie M, Hashim MM, Liu C, Song J, Li D (2020) Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. Int J Biol Macromol 150:595–604. https://doi.org/10.1016/j.ijbiomac.2020.02.078

    Article  Google Scholar 

  173. Rashidi M, Mansour SS, Mostashari P, Ramezani S, Mohammadi M, Ghorbani M (2021) Electrospun nanofiber based on Ethyl cellulose/Soy protein isolated integrated with bitter orange peel extract for antimicrobial and antioxidant active food packaging. Int J Biol Macromol 193:1313–1323. https://doi.org/10.1016/j.ijbiomac.2021.10.182

    Article  Google Scholar 

  174. Deshmukh RK, Akhila K, Ramakanth D, Gaikwad KK (2022) Guar gum/carboxymethyl cellulose based antioxidant film incorporated with halloysite nanotubes and litchi shell waste extract for active packaging. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.12.198

    Article  Google Scholar 

  175. Woraprayote W, Kingcha Y, Amonphanpokin P, Kruenate J, Zendo T, Sonomoto K, Benjakul S, Visessanguan W (2013) Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. Int J Food Microbiol 167:229–235. https://doi.org/10.1016/J.IJFOODMICRO.2013.09.009

    Article  Google Scholar 

  176. Jin T, Liu L, Zhang H, Hicks K (2009) Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes. Int J Food Sci Technol 44:322–329. https://doi.org/10.1111/J.1365-2621.2008.01719.X

    Article  Google Scholar 

  177. Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT 47:400–406. https://doi.org/10.1016/J.LWT.2012.01.039

    Article  Google Scholar 

  178. Zhuang R, Beuchat LR, Chinnan MS, Shewfelt RL, Huang YW (1996) Inactivation of Salmonella montevideo on Tomatoes by Applying Cellulose-Based Edible Films. J Food Prot 59:808–812. https://doi.org/10.4315/0362-028X-59.8.808

    Article  Google Scholar 

  179. Millette M, Le Tien C, Smoragiewicz W, Lacroix M (2007) Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control 18:878–884. https://doi.org/10.1016/J.FOODCONT.2006.05.003

    Article  Google Scholar 

  180. Vartiainen J, Motion R, Kulonen H, Rättö M, Skyttä E, Ahvenainen R (2004) Chitosan-coated paper: Effects of nisin and different acids on the antimicrobial activity. J Appl Polym Sci 94:986–993. https://doi.org/10.1002/APP.20701

    Article  Google Scholar 

  181. Carlin F, Gontard N, Reich N, Nguyen-The C (2001) Utilization of Zein Coating and Sorbic Acid to Reduce Listeria monocytogenes Growth on Cooked Sweet Corn. J Food Sci 66:1385–1389. https://doi.org/10.1111/J.1365-2621.2001.TB15219.X

    Article  Google Scholar 

  182. Natrajan N, Sheldon BW (2000) Inhibition of Salmonella on poultry skin using protein- and polysaccharide-based films containing a nisin formulation. J Food Prot 63:1268–1272. https://doi.org/10.4315/0362-028X-63.9.1268

    Article  Google Scholar 

  183. Cha DS, Choi JH, Chinnan MS, Park HJ (2002) Antimicrobial films based on Na-alginate and κ-carrageenan. LWT - Food Sci Technol 35:715–719. https://doi.org/10.1006/FSTL.2002.0928

    Article  Google Scholar 

  184. Fiorentini C, DusermGarrido G, Bassani A, Cortimiglia C, Zaccone M, Montalbano L, Martinez-Nogues V, Cocconcelli PS, Spigno G (2022) Citrus Peel Extracts for Industrial-Scale Production of Bio-Based Active Food Packaging. Foods. 11:30. https://doi.org/10.3390/foods11010030

    Article  Google Scholar 

  185. Bi J, Tian C, Zhang G-L, Hao H, Hou H-M (2021) Novel procyanidins-loaded chitosan-graft-polyvinyl alcohol film with sustained antibacterial activity for food packaging. Food Chem 365:130534. https://doi.org/10.1016/j.foodchem.2021.130534

    Article  Google Scholar 

  186. Chen F, Chi C (2021) Development of pullulan/carboxylated cellulose nanocrystal/tea polyphenol bionanocomposite films for active food packaging. Int J Biol Macromol 186:405–413. https://doi.org/10.1016/j.ijbiomac.2021.07.025

    Article  Google Scholar 

  187. Wu H, Teng C, Liu B, Tian H, Wang J (2018) Characterization and long term antimicrobial activity of the nisin anchored cellulose films. Int J Biol Macromol 113:487–493. https://doi.org/10.1016/j.ijbiomac.2018.01.194

    Article  Google Scholar 

  188. Aliheidari N, Fazaeli M, Ahmadi R, Ghasemlou M, Emam-Djomeh Z (2013) Comparative evaluation on fatty acid and Matricaria recutita essential oil incorporated into casein-based film. Int J Biol Macromol 56:69–75. https://doi.org/10.1016/j.ijbiomac.2013.02.007

    Article  Google Scholar 

  189. Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2014) Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control 36:1–7. https://doi.org/10.1016/j.foodcont.2013.07.037

    Article  Google Scholar 

  190. Vahedikia N, Garavand F, Tajeddin B, Cacciotti I, Jafari SM, Omidi T, Zahedi Z (2019) Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surfaces B Biointerfaces 177:25–32. https://doi.org/10.1016/j.colsurfb.2019.01.045

    Article  Google Scholar 

  191. Guerra-Rosas MI, Morales-Castro J, Cubero-Márquez MA, Salvia-Trujillo L, Martín-Belloso O (2017) Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control 77:131–138. https://doi.org/10.1016/j.foodcont.2017.02.008

    Article  Google Scholar 

  192. Souza VGL, Pires JRA, Vieira ÉT, Coelhoso IM, Duarte MP, Fernando AL (2019) Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat. Food Hydrocoll 89:241–252. https://doi.org/10.1016/j.foodhyd.2018.10.049

    Article  Google Scholar 

  193. Abdollahi M, Damirchi S, Shafafi M, Rezaei M, Ariaii P (2019) Carboxymethyl cellulose-agar biocomposite film activated with summer savory essential oil as an antimicrobial agent. Int J Biol Macromol 126:561–568. https://doi.org/10.1016/j.ijbiomac.2018.12.115

    Article  Google Scholar 

  194. Min T, Sun X, Yuan Z, Zhou L, Jiao X, Zha J, Zhu Z, Wen Y (2021) Novel antimicrobial packaging film based on porous poly (lactic acid) nanofiber and polymeric coating for humidity-controlled release of thyme essential oil. Lwt 135:110034. https://doi.org/10.1016/j.lwt.2020.110034

    Article  Google Scholar 

Download references

Acknowledgements

The author K. K. Gaikwad would like to sincerely thank the Science and Engineering Research Board (SERB), Government of India, for the financial support provided under the Start-Up Research Grant (SRG) (SRG/2021/001549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirtiraj K. Gaikwad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, R.K., Gaikwad, K.K. Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Conv. Bioref. 14, 4419–4440 (2024). https://doi.org/10.1007/s13399-022-02623-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02623-w

Keywords

Navigation