Skip to main content
Log in

Preparation and characterization of gelatin/β-glucan nanocomposite film incorporated with ZnO nanoparticles as an active food packaging system

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, nanocomposite film as biodegradable active packaging was fabricated by incorporation of gelatin and β-glucan (0, 10, and 20% w/w) in the presence of ZnO nanoparticles (0, 2.5, and 5% w/w); further, it was characterized by XRD, DSC, SEM, and FT-IR analyses. The obtained results exhibited that the incorporation of ZnONPs and β-glucan had no adverse effect on the morphological and thermal properties and the crystallinity of gelatin-based films, indicating appropriate interaction and good compatibility between gelatin matrix, ZnONPs, and β-glucan. Moreover, the increasing concentrations of β-glucan and ZnONPs increased strain to break and the ultimate tensile strength of film samples. The film samples containing a high concentration of ZnONPs showed higher water barrier properties (moisture absorption and water vapor permeability) and surface hydrophobicity. Additionally, the incorporation of ZnONPs in the film samples provided high antibacterial activity against foodborne pathogenic bacteria. In conclusion, the ZnONPs and β-glucan incorporated gelatin-based nanocomposite film could be applied as an active food-packaging system due to its unique features.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Karimi N, Alizadeh A, Almasi H, Hanifian S (2020) Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: a new probiotic active packaging system. LWT. https://doi.org/10.1016/j.lwt.2019.108978

  2. Amjadi S, Nazari M, Alizadeh SA, Hamishehkar H (2020) Multifunctional betanin nanoliposomes-incorporated gelatin/chitosan nanofiber/ZnO nanoparticles nanocomposite film for fresh beef preservation. Meat Sci. https://doi.org/10.1016/j.meatsci.2020.108161

    Article  PubMed  Google Scholar 

  3. Pirsa S, Farshchi E, Roufegarinejad L (2020) Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. J Polym Environ 28(12):3154–3163

    Article  CAS  Google Scholar 

  4. Shahmohammadi Jebel F, Almasi H (2016) Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149:8–19. https://doi.org/10.1016/j.carbpol.2016.04.089

    Article  CAS  PubMed  Google Scholar 

  5. Amjadi S, Emaminia S, Davudian SH et al (2019) Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.03.062

    Article  PubMed  Google Scholar 

  6. Poverenov E, Rutenberg R, Danino S et al (2014) Gelatin-chitosan composite films and edible coatings to enhance the quality of food products: layer-by-layer vs. blended formulations. Food Bioprocess Technol 7:3319–3327

    Article  CAS  Google Scholar 

  7. Amjadi S, Emaminia S, Nazari M et al (2019) Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as food models. Food Bioprocess Technol 12:1205–1219

    Article  CAS  Google Scholar 

  8. Razzaq HAA, Pezzuto M, Santagata G et al (2016) Barley β-glucan-protein based bioplastic film with enhanced physicochemical properties for packaging. Food Hydrocoll 58:276–283. https://doi.org/10.1016/j.foodhyd.2016.03.003

    Article  CAS  Google Scholar 

  9. Ali U, Bijalwan V, Basu S et al (2017) Effect of β-glucan-fatty acid esters on microstructure and physical properties of wheat straw arabinoxylan films. Carbohydr Polym 161:90–98. https://doi.org/10.1016/j.carbpol.2016.12.036

    Article  CAS  PubMed  Google Scholar 

  10. Chang J, Li W, Liu Q et al (2019) Preparation, properties, and structural characterization of β-glucan/pullulan blend films. Int J Biol Macromol 140:1269–1276. https://doi.org/10.1016/j.ijbiomac.2019.08.208

    Article  CAS  PubMed  Google Scholar 

  11. Noshirvani N, Ghanbarzadeh B, Rezaei Mokarram R, Hashemi M (2017) Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag Shelf Life 11:106–114. https://doi.org/10.1016/j.fpsl.2017.01.010

    Article  Google Scholar 

  12. Marra A, Silvestre C, Duraccio D, Cimmino S (2016) Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol 88:254–262. https://doi.org/10.1016/j.ijbiomac.2016.03.039

    Article  CAS  PubMed  Google Scholar 

  13. Espitia PJP, de Soares NFF, dos ReisCoimbra JS et al (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  14. Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237. https://doi.org/10.1016/j.ifset.2016.10.010

    Article  CAS  Google Scholar 

  15. Matai I, Sachdev A, Dubey P et al (2014) Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf B 115:359–367. https://doi.org/10.1016/j.colsurfb.2013.12.005

    Article  CAS  Google Scholar 

  16. Silvestre C, Cimmino S, Pezzuto M et al (2013) Preparation and characterization of isotactic polypropylene/zinc oxide microcomposites with antibacterial activity. Polym J 45:938–945. https://doi.org/10.1038/pj.2013.8

    Article  CAS  Google Scholar 

  17. Gómez-Estaca J, Bravo L, Gómez-Guillén MC et al (2009) Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chem 112:18–25. https://doi.org/10.1016/j.foodchem.2008.05.034

    Article  CAS  Google Scholar 

  18. Zabihollahi N, Alizadeh A, Almasi H, et al (2020) Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension. Int J Biol Macromol

  19. Neus Angles M, Dufresne A (2000) Plasticized starch/tuniein whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353. https://doi.org/10.1021/ma0008701

    Article  Google Scholar 

  20. Amjadi S, Nouri S, Yorghanlou RA, Roufegarinejad L (2020) Development of hydroxypropyl methylcellulose/sodium alginate blend active film incorporated with Dracocephalum moldavica L. essential oil for food preservation. J Thermoplast Compos Mater 0892705720962153

  21. Nagaraju G, Udayabhanu S et al (2017) Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Mater Res Bull 94:54–63. https://doi.org/10.1016/j.materresbull.2017.05.043

    Article  CAS  Google Scholar 

  22. Sinha D, De D, Ayaz A (2018) Performance and stability analysis of curcumin dye as a photo sensitizer used in nanostructured ZnO based DSSC. Spectrochim Acta Part A 193:467–474. https://doi.org/10.1016/j.saa.2017.12.058

    Article  CAS  Google Scholar 

  23. Sanuja S, Agalya A, Umapathy MJ (2015) Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. Int J Biol Macromol 74:76–84. https://doi.org/10.1016/j.ijbiomac.2014.11.036

    Article  CAS  PubMed  Google Scholar 

  24. Kaya M, Khadem S, Cakmak YS et al (2018) Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv 8:3941–3950. https://doi.org/10.1039/c7ra12070b

    Article  CAS  Google Scholar 

  25. Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113:511–519. https://doi.org/10.1016/j.jfoodeng.2012.07.017

    Article  CAS  Google Scholar 

  26. Kanmani P, Rhim JW (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym 106:190–199. https://doi.org/10.1016/j.carbpol.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  27. Shankar S, Teng X, Li G, Rhim JW (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll 45:264–271. https://doi.org/10.1016/j.foodhyd.2014.12.001

    Article  CAS  Google Scholar 

  28. Jouki M, Yazdi FT, Mortazavi SA, Koocheki A (2014) Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocoll 36:9–19. https://doi.org/10.1016/j.foodhyd.2013.08.030

    Article  CAS  Google Scholar 

  29. Jahed E, Khaledabad MA, Bari MR, Almasi H (2017) Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. React Funct Polym 117:70–80. https://doi.org/10.1016/j.reactfunctpolym.2017.06.008

    Article  CAS  Google Scholar 

  30. Sahraee S, Ghanbarzadeh B, Milani JM, Hamishehkar H (2017) Development of gelatin bionanocomposite films containing chitin and ZnO nanoparticles. Food Bioprocess Technol 10:1441–1453. https://doi.org/10.1007/s11947-017-1907-2

    Article  CAS  Google Scholar 

  31. Mohammadi H, Kamkar A, Misaghi A (2018) Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: physico mechanical and antibacterial properties. Carbohydr Polym 181:351–357. https://doi.org/10.1016/j.carbpol.2017.10.045

    Article  CAS  PubMed  Google Scholar 

  32. Oun AA, Rhim JW (2017) Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydr Polym 169:467–479. https://doi.org/10.1016/j.carbpol.2017.04.042

    Article  CAS  PubMed  Google Scholar 

  33. Mukherjee I, Rosolen M (2013) Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. J Therm Anal Calorim 114:1161–1166. https://doi.org/10.1007/s10973-013-3166-4

    Article  CAS  Google Scholar 

  34. Veverka M, Dubaj T, Gallovič J et al (2014) Beta-glucan complexes with selected nutraceuticals: synthesis, characterization, and stability. J Funct Foods 8:309–318. https://doi.org/10.1016/j.jff.2014.03.032

    Article  CAS  Google Scholar 

  35. Nováka M, Synytsyaa A, Gedeonb O et al (2012) Yeast β(1–3), (1–6)-d-glucan films: preparation and characterization of some structural and physical properties. Carbohydr Polym 87:2496–2504. https://doi.org/10.1016/j.carbpol.2011.11.031

    Article  CAS  Google Scholar 

  36. Limberger-Bayer VM, de Francisco A, Chan A et al (2014) Barley β-glucans extraction and partial characterization. Food Chem 154:84–89

    Article  CAS  Google Scholar 

  37. Xiong G, Pal U, Serrano JG et al (2006) Photoluminescence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys Status Solidi Curr Top Solid State Phys 3:3577–3581. https://doi.org/10.1002/pssc.200672164

    Article  CAS  Google Scholar 

  38. Handore K, Bhavsar S, Horne A et al (2014) Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes. J Macromol Sci Part A 51:941–947. https://doi.org/10.1080/10601325.2014.967078

    Article  CAS  Google Scholar 

  39. Rokesh K, Nithya A, Jeganathan K, Jothivenkatachalam K (2016) A Facile solid state synthesis of cone-like ZnO microstructure an efficient solar-light driven photocatalyst for rhodamine B degradation. Mater Today Proc 3:4163–4172. https://doi.org/10.1016/j.matpr.2016.11.091

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the supports of the Islamic Azad University of Tabriz. This research did not receive any specific grant from funding agencies in public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainaz Alizadeh.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherafatkhah Azari, S., Alizadeh, A., Roufegarinejad, L. et al. Preparation and characterization of gelatin/β-glucan nanocomposite film incorporated with ZnO nanoparticles as an active food packaging system. J Polym Environ 29, 1143–1152 (2021). https://doi.org/10.1007/s10924-020-01950-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01950-1

Keywords

Navigation