Skip to main content
Log in

Mechanical properties of bcc Fe-Cr alloys by first-principles simulations

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The effect of chromium content on the fundamental mechanical properties of Fe-Cr alloys has been studied by first-principles calculations. Within a random solid solution model, the lattice constants and the elastic constants of ferromagnetic bcc Fe1−x Cr x (0⩽ · ⩽0.156) alloys were calculated for different compositions. With addition of Cr content, the lattice parameters of Fe-Cr alloys are larger than that of pure Fe solid, and the corresponding Young’s modulus and shear modulus rise nonmonotonically with the increasing Cr content. All alloys (except 9.4 at% Cr) exhibit less ductile behavior compared with pure bcc Fe. For the Fe1−x Cr x (0⩽ · ⩽0.156) alloys, the average magnetic moment per atom decreases linearly with the increasing Cr concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf, and M. Victoria, J. Nucl. Mater., 2002, 307–311: 455

    Article  Google Scholar 

  2. A. Kohyama, A. Hishinuma, D. S. Gelles, R. L. Klueh, W. Dietz, and K. Ehrlich, J. Nucl. Mater., 1996, 233–237: 138

    Article  Google Scholar 

  3. T. Muroga, M. Gasparotto, and S. J. Zinkle, Fusion Eng. Des., 2002, 61–62: 13

    Article  Google Scholar 

  4. A. A. F. Tavassoli, J. Nucl. Mater., 2002, 302(2–3): 73

    Article  ADS  Google Scholar 

  5. B. van der Schaaf, D. S. Gelles, S. Jitsukawa, A. Kimura, R. L. Klueh, A. Moslang, and G. R. Odette, J. Nucl. Mater., 2000, 283–287: 52

    Article  Google Scholar 

  6. F. A. Garner, D. S. Gelles, and F. W. Wiffen, eds., TMSAIME, 1985

  7. A. F. Rowcliffe, J. P. Robertson, R. L. Klueh, K. Shiba, D. J. Alexander, M. L. Grossbeck, and S. Jitsukawa, J. Nucl. Mater., 1998, 258(263): 1275

    Article  ADS  Google Scholar 

  8. A. Kohyama, Y. Kohno, K. Satoh, and N. Igata, J. Nucl. Mater., 1984, 122(1–3): 619

    Article  ADS  Google Scholar 

  9. S. Jitsukawa, M. Tamura, B. van der Schaaf, R. L. Klueh, A. Alamo, C. Petersen, M. Schirra, P. Spaetig, G. R. Odette, A. A. Tavassoli, K. Shiba, A. Kohyama, and A. Kimura, J. Nucl. Mater., 2002, 307–311: 179

    Article  Google Scholar 

  10. T. Hasegawa, Y. Tomita, and A. Kohyama, J. Nucl. Mater., 1998, 258(263): 1153

    Article  ADS  Google Scholar 

  11. R. L. Klueh, D. J. Alexander, and M. Rieth, J. Nucl. Mater., 1999, 273(2): 146

    Article  ADS  Google Scholar 

  12. Q. Y. Huang, J. G. Li, and Y. X. Chen, J. Nucl. Mater., 2004, 329–333: 268

    Article  Google Scholar 

  13. V. Krsjak,W. Egger, M. Petriska, and S. Sojak, Probl. Atom. Sci. Tech., 2009, 109.

  14. R. L. Klueh, D. J. Alexander, and E. A. Kenik, J. Nucl. Mater., 1995, 227(1–2): 11

    Article  ADS  Google Scholar 

  15. Z. Lu, R. G. Faulkner, G. Was, and B. D. Wirth, Scripta Materialia, 2008, 58(10): 878

    Article  Google Scholar 

  16. M. I. Luppo, C. Bailat, R. Schaublin, and M. Victoria, J. Nucl. Mater., 2000, 283–287: 483

    Article  Google Scholar 

  17. R. H. Jones, H. L. Heinisch, and K. A. McCarthy, J. Nucl. Mater., 1999, 271–272: 518

    Article  Google Scholar 

  18. D. S. Gelles, J. Nucl. Mater., 1995, 225: 163

    Article  ADS  Google Scholar 

  19. S. I. Porollo, A. M. Dvoriashin, A. N. Vorobyev, and Y. V. Konobeev, J. Nucl. Mater., 1998, 256(2–3): 247

    Article  ADS  Google Scholar 

  20. G. R. Speich, A. J. Schwoeble, and W.C. Leslie, Metall. Trans., 1972, 3(8): 2031

    Article  Google Scholar 

  21. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59(3): 1758

    Article  ADS  Google Scholar 

  22. P. E. Blöchl, Phys. Rev. B, 1994, 50(24): 17953

    Article  ADS  Google Scholar 

  23. G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54(16): 11169

    Article  ADS  Google Scholar 

  24. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B, 1992, 46(11): 6671

    Article  ADS  Google Scholar 

  25. D. C. Wallace, Solid State Physics, New York: Academic, 1970

    Google Scholar 

  26. J. J. Zhao, J. M. Winey, and Y. M. Gupta, Phys. Rev. B, 2007, 75(9): 094105

    Article  ADS  Google Scholar 

  27. L. Vočdlo, G. A. de Wijs, G. Kresse, M. Gillan, and G. D. Price, Faraday Discuss., 1997, 106: 205

    Article  ADS  Google Scholar 

  28. X. W. Sha and R. E. Cohen, Phys. Rev. B, 2006, 74(21): 214111

    Article  ADS  Google Scholar 

  29. J. A. Rayne and B. S. Chandrasekhar, Phys. Rev., 1961, 122(6): 1714

    Article  ADS  Google Scholar 

  30. L. Vitos, Computational Quantum Mechanics for Materials Engineers, London: Springer-Verlag, 2007

    Google Scholar 

  31. M. Ropo, K. Kokko, and L. Vitos, Phys. Rev. B, 2008, 77(19): 195445

    Article  ADS  Google Scholar 

  32. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Belfast: Pergamon, 1958

    Google Scholar 

  33. H. L. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B, 2009, 79(22): 224201

    Article  ADS  Google Scholar 

  34. P. A. Korzhavyi, A. V. Ruban, J. Odqvist, J. O. Nilsson, and B. Johansson, Phys. Rev. B, 2009, 79(5): 054202

    Article  ADS  Google Scholar 

  35. S. F. Pugh, Philos. Mag., 1954, 45: 823

    Google Scholar 

  36. D. G. Pettifor, Mater. Sci. Technol., 1992, 8: 345

    Article  Google Scholar 

  37. C. Kittel, Introduction to Solid State Physics, New York: Wiley, 1996

    Google Scholar 

  38. A. T. Aldred, Phys. Rev. B, 1976, 14(1): 219

    Article  ADS  Google Scholar 

  39. C. Paduani and J. C. Krause, Braz. J. Phys., 2006, 36(4a): 1262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-jun Zhao  (赵纪军).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Xq., Zhao, Jj. & Xu, Jc. Mechanical properties of bcc Fe-Cr alloys by first-principles simulations. Front. Phys. 7, 360–365 (2012). https://doi.org/10.1007/s11467-011-0193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-011-0193-0

Keywords

Navigation