Skip to main content
Log in

An Ab Initio Investigation of the Structural Stability, Thermodynamic, Optoelectronic, and Thermoelectric Properties of LuXNi2Sn2 (X = V, Nb, Ta) Double Half Heusler Materials

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The primary objective of this study is to investigate the influence of spin-orbit coupling and atom type on the electronic, optical, and thermoelectric properties of LuXNi2Sn2 (X = V, Nb, and Ta) double-half Heusler alloys. To achieve this, calculations were performed using the full potential linearized augmented plane wave method within the framework of density functional theory. Both full relativistic and scalar relativistic calculations were employed. The exchange-correlation interactions in this study were modeled using the PBEsol version of the generalized gradient approximation when calculating the structural ground state parameters. For the analysis of electronic, optical, and thermoelectric properties, the modified Becke–Johnson potential was employed. The modified Becke–Johnson potential was specifically chosen for its capability to improve the description of band gaps, particularly for systems with small band gaps, such as the LuXNi2Sn2 (X = V, Nb, and Ta) double-half Heusler materials examined in this study. This potential offers a more accurate representation of the electronic properties, enabling a more reliable analysis of the optical and thermoelectric characteristics of the materials under investigation. The examined LuXNi2Sn2 (X = V, Nb, and Ta) materials exhibit semiconductor behaviour, with band gaps smaller than 0.4 eV that can be controlled by varying the “X” atom. The charge carriers, specifically holes and electrons, exhibit light effective masses, indicating high mobility. Furthermore, these compounds exhibit low thermal expansion coefficients and satisfy the criteria for thermodynamic stability. In terms of optical properties, they display substantial absorption coefficients in the ultraviolet (UV) light region, high optical conductivity, and high reflectivity in the visible light region. Considering their favourable power factor and figure of merit characteristics, the LuXNi2Sn2 (X = V, Nb, and Ta) materials possess the potential to be promising candidates for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Bouferrache, M.A. Ghebouli, B. Ghebouli, M. Fatmi, S. Alomairy, T. Chihi, Stability, electronic band structure, magnetic, optical and thermoelectric properties of CoXCrZ (X = Fe, Mn and Z = Al, Si) and FeMnCrSb quaternary Heusler. Chin. J. Phys. 81, 303–324 (2023)

    Article  CAS  Google Scholar 

  2. M. Jamil, Q. Ain, M.U. Din, M. Yousaf, J. Munir, The structural, elastic, electromagnetic and optical response of quaternary Heusler CoFeTiZ (Z = Ge, Sb) alloys: a DFT study with mBJ and mBJ + SOC methods. Eur. Phys. J. Plus 137, 1243 (2022). https://doi.org/10.1140/epjp/s13360-022-03454-4

    Article  CAS  Google Scholar 

  3. S.S. Essaoud, A.S. Jbara, First-principles calculation of magnetic, structural, dynamic, electronic, elastic, thermodynamic and thermoelectric properties of Co2ZrZ (Z = Al, Si) Heusler alloys. J. Magn. Magn. Mater. 531, 167984–167999 (2021). https://doi.org/10.1016/j.jmmm.2021.167984

    Article  CAS  Google Scholar 

  4. K. Boudiaf, A. Bouhemadou, Y. Al-Douri, R. Khenata, S. Bin-Omran, N. Guechi, Electronic and thermoelectric properties of the layered BaFAgCh (ch = S, Se and Te): first-principles study. J. Alloys Compd. 759, 32–43 (2018)

    Article  CAS  Google Scholar 

  5. A. Telfah, S. Sâad Essaoud, H. Baaziz, Z. Charifi, A.M. Alsaad, M.J.A. Ahmad, R. Hergenröder, R. Sabirianov, Density functional theory investigation of physical properties of KCrZ (Z = S, Se, Te) half-Heusler alloys. Phys. Status Solidi (b) 258, 2100039 (2021)

    Article  ADS  CAS  Google Scholar 

  6. D. Zou, H. Zheng, J. Li, Predicted thermoelectric properties of natural superlattice structural compounds BaCuChF (ch = S, Se and Te) by first-principles calculations. J. Alloys Compd. 686, 571–576 (2016)

    Article  CAS  Google Scholar 

  7. N.A. Koshi, R. John, Half-metallic ferrimagnetism in CoFeNbZ (Z = Al, Si, Ge, Sn) quaternary Heusler alloys: a DFT study. J. Supercond. Nov. Magn. 32, 977–986 (2019). https://doi.org/10.1007/s10948-018-4780-y

    Article  CAS  Google Scholar 

  8. I. Jum’h, S. Sâad essaoud, H. Baaziz, Z. Charifi, A. Telfah, Electronic and magnetic structure and elastic and thermal properties of Mn2-based full Heusler alloys. J. Supercond. Nov. Magn. 32, 3915–3926 (2019). https://doi.org/10.1007/s10948-019-5095-3

    Article  CAS  Google Scholar 

  9. H. Alqurashi, R. Haleoot, B. Hamad, First-principles investigations of Zr-based quaternary Heusler alloys for spintronic and thermoelectric applications. Comput. Mater. Sci. 210, 111477 (2022)

    Article  CAS  Google Scholar 

  10. J. Singh, K. Kaur, S.A. Khandy, S. Dhiman, M. Goyal, S.S. Verma, Structural, electronic, mechanical, and thermoelectric properties of LiTiCoX (X = Si, Ge) compounds. Int. J. Energy Res. 48, 16891–16900 (2021). https://doi.org/10.1002/er.6851

    Article  CAS  Google Scholar 

  11. S.A. Khandy, Inspecting the electronic structure and thermoelectric power factor of novel p-type half-Heuslers. Sci. Rep. 11, 1–10 (2021)

    Article  Google Scholar 

  12. R.K. Nutor, R. Wei, Q. Cao, X. Wang, S. Ding, D. Zhang, F. Li, J.-Z. Jiang, Quasi-superplasticity in the AlCoNiV medium entropy alloy with Heusler L21 precipitates. APL Mater. 10, 111103 (2022)

    Article  ADS  CAS  Google Scholar 

  13. M. Kratochvílová, D. Král, M. Dušek, J. Valenta, R.H. Colman, O. Heczko, M. Veis, Fe2MnSn–experimental quest for predicted Heusler alloy. J. Magn. Magn. Mater. 501, 166426 (2020)

    Article  Google Scholar 

  14. L. Tian-Wei, C. Fu-Hua, Deformation behavior and microstructure evolution of CoCrNi medium-entropy alloy shaped charge liners. Metals 811 (2022). https://doi.org/10.3390/met12050811

  15. S. Fabbrici, F. Cugini, F. Orlandi, N.S. Amadè, F. Casoli, D. Calestani, R. Cabassi, G. Cavazzini, L. Righi, M. Solzi, Magnetocaloric properties at the austenitic Curie transition in Cu and Fe substituted Ni–Mn–In Heusler compounds. J. Alloys Compd. 899, 163249 (2022)

    Article  CAS  Google Scholar 

  16. F. Cugini, S. Chicco, F. Orlandi, G. Allodi, P. Bonfá, V. Vezzoni, O.N. Miroshkina, M.E. Gruner, L. Righi, S. Fabbrici, Effective decoupling of ferromagnetic sublattices by frustration in Heusler alloys. Phys. Rev. B 105, 174434 (2022)

    Article  ADS  CAS  Google Scholar 

  17. E.C. Passamani, V.P. Nascimento, C. Larica, A.Y. Takeuchi, A.L. Alves, J.R. Proveti, M.C. Pereira, J.D. Fabris, The influence of chemical disorder enhancement on the martensitic transformation of the Ni50Mn36Sn14 Heusler-type alloy. J. Alloys Compd. 509, 7826–7832 (2011)

    Article  CAS  Google Scholar 

  18. H.T. Jeong, H.K. Park, W.J. Kim, Hot deformation behavior and processing map of a Sn0.5CoCrFeMnNi high entropy alloy with dual phases. Mater. Sci. Eng. A 801, 140394 (2021)

    Article  CAS  Google Scholar 

  19. O. Monnereau, F. Guinneton, L. Tortet, A. Garnier, R. Notonier, M. Cernea, S.A. Manea, C. Grigorescu, X-ray diffraction and microscopy investigations of structural inhomogeneities in NiMnSb crystallised from the melt. J. Phys. IV (Proc.) EDP Sci. 118, 343–350 (2004). https://doi.org/10.1051/jp4:2004118040

    Article  CAS  Google Scholar 

  20. M. Kohl, M. Gueltig, V. Pinneker, R. Yin, F. Wendler, B. Krevet, Magnetic shape memory microactuators. Micromachines 5, 1135–1160 (2014)

    Article  Google Scholar 

  21. Y. Liu, H. Xie, C. Fu, G.J. Snyder, X. Zhao, T. Zhu, Demonstration of a phonon-glass electron-crystal strategy in (Hf, Zr) NiSn half-Heusler thermoelectric materials by alloying. J. Mater. Chem. A 3, 22716–22722 (2015)

    Article  CAS  Google Scholar 

  22. T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao, High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv. Energy Mater. 5, 1500588 (2015)

    Article  Google Scholar 

  23. N. Shutoh, S. Sakurada, Thermoelectric properties of the tix(Zr0.5Hf0.5)1–x NiSn half-Heusler compounds. J. Alloys Compd. 389, 204–208 (2005)

    Article  CAS  Google Scholar 

  24. M. Balli, S. Jandl, P. Fournier, A. Kedous-Lebouc, Advanced materials for magnetic cooling: fundamentals and practical aspects. Appl. Phys. Rev. 4, 021305 (2017)

    Article  ADS  Google Scholar 

  25. S. Chen, K.C. Lukas, W. Liu, C.P. Opeil, G. Chen, Z. Ren, Effect of Hf concentration on thermoelectric properties of nanostructured n-type half-Heusler materials HfxZr1–xNiSn0.99Sb0.01. Adv. Energy Mater. 3, 1210–1214 (2013)

    Article  CAS  Google Scholar 

  26. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, K.K. Johari, B. Gahtori, M. Saravanan, A. Dhar, Compositional tuning of ZrNiSn half-Heusler alloys: thermoelectric characteristics and performance analysis. J. Phys. Chem. Solids 123, 105–112 (2018)

    Article  ADS  CAS  Google Scholar 

  27. S. Anand, M. Wood, Y. Xia, C. Wolverton, G.J. Snyder, Double half-Heuslers. Joule. 3, 1226–1238 (2019)

    Article  CAS  Google Scholar 

  28. A. Slamani, F. Khelfaoui, O. Sadouki, A. Bentayeb, K. Boudia, F. Belkharroubi, Structural, mechanical, electronic, and thermoelectric properties of TiZrCo2Bi2, TiHfCo2Bi2, and ZrHfCo2Bi2 double half Heusler semiconductors. Emerg. Mater. 681–690 (2023). https://doi.org/10.1007/s42247-023-00468-1

  29. K. Berarma, S.S. Essaoud, A.A. Mousa, S.M. Al Azar, A.Y. Al-Reyahi, Opto-electronic, thermodynamic and charge carriers transport properties of Ta2FeNiSn2 and Nb2FeNiSn2 double half-heusler alloys. Semicond. Sci. Technol. (2022). https://doi.org/10.1088/1361-6641/AC612B

    Article  Google Scholar 

  30. S.S. Essaoud, A. Bouhemadou, M.E. Ketfi, D. Allali, S. Bin-Omran, Structural parameters, electronic structure and linear optical functions of LuXCo2Sb2 (X = V, Nb and Ta) double half Heusler alloys. Phys. B Condens. Matter. 657, 414809–414819 (2023)

    Article  Google Scholar 

  31. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k: an APW + lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020). https://doi.org/10.1063/1.5143061

    Article  ADS  CAS  PubMed  Google Scholar 

  32. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PHYSREVLETT.100.136406

    Article  ADS  PubMed  Google Scholar 

  33. A.D. Becke, E.R. Johnson, A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006). https://doi.org/10.1063/1.2213970

    Article  ADS  CAS  PubMed  Google Scholar 

  34. V.L.A. Otero-de-la-Roza, D. Abbasi-Pérez, Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 182(10), 2232–2248 (2011)

    Article  ADS  CAS  Google Scholar 

  35. V.L.A. Otero-de-la-Roza, Gibbs2: a new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput. Phys. Commun. 182(8), 1708–1720 (2011)

    Article  ADS  CAS  Google Scholar 

  36. G.K. Madsen, J. Carrete, M.J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018)

    Article  ADS  CAS  Google Scholar 

  37. C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175, 1–14 (2006)

    Article  ADS  CAS  Google Scholar 

  38. S.Z. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvåg, B.G. Svensson, Electronic structure and optical properties of Zn X (X = O, S, Se, Te): a density functional study. Phys. Rev. B 75, 155104 (2007). https://doi.org/10.1103/PhysRevB.75.155104

    Article  ADS  CAS  Google Scholar 

  39. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501–1509 (2013)

    Article  CAS  Google Scholar 

  40. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C. Wolverton, The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 1, 1–15 (2015)

    Article  Google Scholar 

  41. C.G. Broyden, The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. IMA J. Appl. Math. 6, 222–231 (1970)

    Article  MathSciNet  Google Scholar 

  42. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  43. A.T. Petit, P.L. Dulong, Recherches de la theorie de la chaleur. Ann. Chim. Phys. 10, 395–413 (1819)

    Google Scholar 

  44. S. Sâad Essaoud, S. Al Azar, A.A. Mousa, R.S. Masharfe, Characterization of structural, dynamic, optoelectronic, thermodynamic, mechanical and thermoelectric properties of AMgF3 (A = K or Ag) fluoro-perovskites compounds. Phys. Scr. 98, 035820 (2023)

    Article  ADS  Google Scholar 

  45. G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973)

    Article  ADS  CAS  Google Scholar 

  46. A. Khireddine, A. Bouhemadou, S. Alnujaim, N. Guechi, S. Bin-Omran, Y. Al-Douri, R. Khenata, S. Maabed, A.K. Kushwaha, First-principles predictions of the structural, electronic, optical and elastic properties of the zintl-phases AE3GaAs3 (AE = Sr, Ba). Solid State Sci. 114, 106563 (2021)

    Article  CAS  Google Scholar 

  47. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093 (1962)

    Article  ADS  CAS  Google Scholar 

  48. N.S. Chauhan, Y. Miyazaki, Iron-based semiconducting half-Heusler alloys for thermoelectric applications. ChemNanoMat. 9, e202200403 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author S. Bin Omran acknowledges the Researchers Supporting Project Number (RSP2023R82), King Saud University, Riyadh, Saudi Arabia.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SSE: Conceptualization, methodology, writing and investigation, formal analysis. AB: software, verification, supervision, visualization. MEK: Conceptualization, writing. DA: Conceptualization, writing. MR: Verification, supervision. SBO: Verification, supervision. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Saber Saad Essaoud.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad Essaoud, S., Bouhemadou, A., Allali, D. et al. An Ab Initio Investigation of the Structural Stability, Thermodynamic, Optoelectronic, and Thermoelectric Properties of LuXNi2Sn2 (X = V, Nb, Ta) Double Half Heusler Materials. J Inorg Organomet Polym 34, 885–902 (2024). https://doi.org/10.1007/s10904-023-02881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02881-9

Keywords

Navigation