Skip to main content
Log in

Thermodynamic Assessment of the Fe-Cr-B Ternary System and the Fe-Nd-B-Cr Quaternary System in the Fe-Rich Corner

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A thermodynamic description for the Fe-Nd-B-Cr quaternary system has been developed on the basis of six constituent binary systems and four critical ternary systems using the CALPHAD (CALculation of PHAse Diagrams) method, which is based on the fact that a phase diagram is a representation of the thermodynamic properties of a system. The Fe-B binary system is modified, and Fe-Nd-Cr and Fe-Cr-B ternary systems are thermodynamically reassessed in order to obtain more reasonable thermodynamic parameters and more accurate phase relations. The assessment results for the Fe-Nd-Cr and Fe-Cr-B ternary systems are in good agreement with the available experimental phase relations, including the liquidus surface projection and the vertical sections, while for the other two ternary systems, the B-Nd-Cr and the Fe-Nd-B systems, the thermodynamic parameters are mainly adopted from optimization results reported in the literature, with slight modifications for the compatibility of all the constituent binary systems. Based on the metastable experimental information, a reasonable, self-consistent, and comprehensive thermodynamic description of the Fe-Nd-B-Cr quaternary system is developed, which is of interest for electronic and magnet materials. The developed thermodynamic description can be further extended as a thermodynamic database for permanent magnet alloy design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Fu, H.J. Peng, R.G. Jia, and T. Li, Effect of non-rare-earth element enrichment on in-the-column secondary electron image contrast of Nd-rich phases in Nd-Fe-B sintered magnets. Mater. Charact. 23, 113042 (2023).

    Article  Google Scholar 

  2. S.H. Dong, X.T. Li, Q.M. Lu, W.Q. Liu, Y.F. Wu, and M. Yue, Study on mechanical properties of recycled sintered Nd-Fe-B magnets. J. Alloy. Compd. 962, 171156 (2023).

    Article  CAS  Google Scholar 

  3. X.S. Xia, G.T. Wei, L. Wu, Y. Ouyang, X. Tang, Y.Y. Du, R.J. Chen, J.Y. Ju, W.Z. Yin, and A. Yan, Improvement of overall texture and magnetic properties in bulk hot-deformed Nd-Fe-B composite magnets by the design of macrostructure. J. Alloys Compd. 960, 170759 (2023).

    Article  CAS  Google Scholar 

  4. M. Liu, L. Zhang, B. Zhao, F. Chen, X. Xia, Y. Yu, H. Yamamoto, and K. Ito, Orientation dependence of plastic deformation of sintered Nd-Fe-B magnets at high temperature. Acta Mater. 244, 118559 (2023).

    Article  CAS  Google Scholar 

  5. W.C. Chang, D.Y. Chiou, S.H. Wu, B.M. Ma, and C.O. Bounds, High performance α-Fe/Nd2Fe14Nd2Fe14B-type nanocomposites. Appl. Phys. Lett. 72, 121 (1998).

    Article  CAS  Google Scholar 

  6. W.F. Miao, J. Ding, P.G. McCormick, and R. Street, Remanence-enhanced Nd8Fe87M1B4 (M = Fe, V, Si, Ga, Cr) alloys. J. Magn. Magn. Mater. 171–181, 976 (1998).

    Article  Google Scholar 

  7. J. Jakubowicz, A. Szlaferek, and M. Jurczyk, Magnetic properties of nanostructured Nd 2(Fe Co, Cr) 1 4B/α-Fe magnets. J. Alloy. Compd. 283, 307 (1999).

    Article  CAS  Google Scholar 

  8. J. Jakubowicz, M. Jurczyk, A. Handstein, D. Hinz, O. Gutflfleisch, and K.H. Müller, Temperature dependence of magnetic properties for nanocomposite Nd2(Fe Co, M)14B/α-Fe magnets. J. Magn. Magn. Mater. 208, 163 (2000).

    Article  CAS  Google Scholar 

  9. J. Jakubowicz and M. Giersig, Structure and magnetic properties of Nd2(Fe Co, Al, Cr)14B/α-Fe nanocomposite magnets. J. Alloys Compd. 349, 311 (2003).

    Article  CAS  Google Scholar 

  10. X.F. Ding, Y.J. Wu, L.J. Yang, C. Xu, S. Mao, Y.P. Wang, D. Zheng, and Z.L. Song, The properties of chromium oxide coatings on NdFeB magnets by magnetron sputtering with ion beam assisted deposition. Vacuum 131, 127 (2016).

    Article  CAS  Google Scholar 

  11. J.W. Zheng, M. Ling, and Q.P. Xia, A preparation method and effects of Al-Cr coating on NdFeB sintered magnets. J. Magn. Magn. Mater. 324, 3966 (2012).

    Article  CAS  Google Scholar 

  12. K. Suzuki, J.M. Cadogan, Y. Shigemoto, K. Murakami, T. Miyoshi, and Y. Shioya, Formation and decomposition of Fe3B/Nd2Fe14B nanocomposite structure in Fe-Nd-B-Cr melt-spun ribbons under isothermal annealing. J. Appl. Phys. 85, 5914 (1999).

    Article  CAS  Google Scholar 

  13. M. Uehara, S. Hirosawa, H. Kanekiyo, N. Sano, and T. Tomida, Effect of Cr-doping on crystallization sequence and magnetic properties of Fe3B/Nd2Fe14B nanocomposite permanent magnets. Nanostruct. Mater. 10, 151 (1998).

    Article  CAS  Google Scholar 

  14. B.X. Gu, B.G. Shen, and R.H. Zhai, Influence of substitution of Cr for Fe on magnetic properties of Nd4Fe77.5B18.5 alloys. JJ Magn Magn. Mater. 124, 85 (1993).

    Article  CAS  Google Scholar 

  15. T. Shima, A. Kamegawa, and H. Fujimori, Enhanced coercive force of Nd-Fe-B thin films by the introduction of a Cr underlayer. J. Alloy. Compd. 281, 46 (1998).

    Article  CAS  Google Scholar 

  16. N. Sano, T. Tomida, S. Hirosawa, M. Uehara, and H. Kanekiyo, Crystallization process of a rapidly quenched Fe-B-Nd nanocomposite magnet. Mater. Sci. Eng. A. 250(1), 146 (1998).

    Article  Google Scholar 

  17. A.T. Dinsdale, SGTE data for pure elements. Calphad 15, 317 (1991).

    Article  CAS  Google Scholar 

  18. J.O. Andersson and B. Sundman, Thermodynamic properties of the Cr-Fe system. Calphad 83, 83 (1987).

    Article  Google Scholar 

  19. C.E. Campbell and U.R. Kattner, Assessment of the Cr-B system and extrapolation to the Ni-Al-Cr-B quaternary system. Calphad 26, 477 (2002).

    Article  CAS  Google Scholar 

  20. G.J. Zhou, Y. Luo, and Y. Zhou, Thermodynamic reassessment of the Nd-Fe-B ternary system. J. Electron. Mater. 45, 418 (2016).

    Article  CAS  Google Scholar 

  21. L. Battezzati, C. Antonione, and M. Baricco, Undercooling of Ni-B and Fe-B alloys and their metastable phase diagrams. J. Alloys Comp. 247(1–2), 164 (1997).

    Article  CAS  Google Scholar 

  22. B. Hallemans, P. Bellen, P. Wollants, et al., Thermodynamic reassessment of the Fe-B system and calculation of the Fe-Nd and Nd-B phase diagrams, presented at Calphad XXIII, Madison, USA, June 1994 P.12

  23. G.J. Zhou, A.H. Cai, and Y. Luo, Thermodynamic assessment of the B-Nd-Cr system. Mater. Lett. 221, 15 (2018).

    Article  CAS  Google Scholar 

  24. M.V. Chepiga, and Yu.B. Kuz’ma, Phase equilibrium in the system Chromium-Iron-Boron. Inzvest V. U. Z. Chernaya Met. 3, 127 (1970).

    Google Scholar 

  25. S. Hiroaswa and H. Kanekiyo, Nanostructure and magnetic properties of chromium-doped Fe3B-Nd2Fe14B exchange-coupled permanent magnets. Mater. Sci. Eng. A 217, 10284 (1996).

    Google Scholar 

  26. B. Hallemans, P. Wollants, and J.R. Roos, Thermodynamic reassessment and calculation of the Fe-B phase diagram. Z. Metallkd. 85, 675 (1994).

    Google Scholar 

  27. L.M. Pan, Phase equilibria and elastic module of rapidly solidified Fe-Cr-Mo-B and Fe-Cr-Ni-B alloys, Dissertation for the degree of doctor of philosophy, University of surrey, UK, 1992

  28. B. Hallemans, P. Wollants, and J.R. Roos, Thermodynamic assessment of the Fe-Nd-B phase diagram. J. Phase Equilib. Diff. 16, 137 (1995).

    Article  CAS  Google Scholar 

  29. K.H.J. Buschow, D.B. Demooij, and H.M. Vannoort, Properties of metastable ternary compounds and amorphous alloys in the Nd-Fe-B system. J. Less-Common Met. 125, 135 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hunan Province (Grant No. 2020JJ4335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G.J., Cai, A.H. Thermodynamic Assessment of the Fe-Cr-B Ternary System and the Fe-Nd-B-Cr Quaternary System in the Fe-Rich Corner. J. Electron. Mater. 52, 7785–7793 (2023). https://doi.org/10.1007/s11664-023-10699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10699-x

Keywords

Navigation