Skip to main content
Log in

Cu Doped NiS/ZnS Nanocomposites for Photodegradation of Methyl Green, Methylene Blue and Congo Red Pollutants

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Herein, new efficient photocatalysts composed of Cu doped NiS/ZnS quantum dots-composites were synthesized by coprecipitation technique for treatment of organic dyes. Treatment of dyeing-wastewater is an important issue to reduce the environmental pollution and providing a large quantity of pure water. The transmission electron microscope images of pure and Cu doped NiS/ZnS composites show quantum dots particles with size of 3–4 nm. The X-ray diffraction confirmed the formation of cubic ZnS and rhombohedral NiS. Optically, doping by 4 wt% Cu ions was reduced the band gap energy of ZnS from 3.4 to 2.98 eV, which improve the visible light absorption. 4 wt% Cu doped NiS/ZnS nanocomposite reveals a fast and remarkable photodegradation efficiency of 95%, 98% and 97% towards 20 ppm methyl green, methylene blue and Congo red during 60 min of sunlight irradiation. For three cycles, 4 wt% Cu doped NiS/ZnS nanocomposite exhibits significant photodegradation activities of 98%, 92% and 85%, respectively. The improvements of the photocatalytic activity of Cu doped NiS/ZnS nanocomposite can be attributed to some factors including visible-light absorption and charge carriers separation. The Cu doping improves the visible light response of ZnS through reducing the band gap which reinforce the number of the excited electron-hole pairs. Too, Cu ions act as trapping centers (Cu2+ + e → Cu+) which boost the separation of the excited electron-hole pairs and consequently improve the photodegradation activity. This study point out that the integration of p-n heterostructure and doping strategies are efficient for deign of photocatalysts for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All relevant data and material are presented in the main paper.

References

  1. G. Su, L. Liu, L. Zhang, X. Liu, J. Xue, A. Tang, Environ. Sci. Pollut Res. 28, 50286–50301 (2021). https://doi.org/10.1007/s11356-021-14248-z

    Article  CAS  Google Scholar 

  2. M. Mohsen, H. Tantawy, I. Naeem, M. Awaad, O. Abuzalat, A. Baraka, F. Iqbal, J. Inorg. Organomet. Polym. Mater. 32, 32:2961–2974 (2022). https://doi.org/10.1007/s10904-022-02324-x

    Article  CAS  Google Scholar 

  3. J. Sun, Z. Yang, L. Li, Y. Zhang, G. Zou, Environ. Sci. Pollut Res. 28, 50813–50824 (2021). https://doi.org/10.1007/s11356-021-14188-8

    Article  CAS  Google Scholar 

  4. A.S. AlWasidi, I.I.S. AlZahrani, H.I. Thawibaraka, A.M. Naglah, S. AlReshaidan, H.M. Youssef, J. Inorg. Organomet. Polym. Mater. 32, 443–454 (2022). https://doi.org/10.1007/s10904-021-02113-y

    Article  CAS  Google Scholar 

  5. A.K. Dutta, U.K. Ghorai, K.K. Chattopadhyay, D. Banerjee, P.E.: Low-Dimens, Syst Nanostruct. 99, 6–15 (2018). https://doi.org/10.1016/j.physe.2018.01.008

    Article  CAS  Google Scholar 

  6. Y. Wang, X. Cui, P. Zhang, Y. Wang, W. Lu, Environ. Technol. Innov. 29, 102972 (2023). https://doi.org/10.1016/j.eti.2022.102972

    Article  CAS  Google Scholar 

  7. A. Tawfk, M.G. Alalm, H.M. Awad, M. Islam, M.A. Qyyum, A.H. AlMuhtaseb, A.I. Osman, M. Lee, Environ. Chem. Lett. 20, 1839–1862 (2022). https://doi.org/10.1007/s10311-022-01390-4

    Article  CAS  Google Scholar 

  8. A. Ilyas, K. Rafiq, M.Z. Abid, A. Rauf, E. Hussain, RSC Adv. 13, 2379 (2023). https://doi.org/10.1039/D2RA07070G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M.F. Elshahawy, G.A. Mahmoud, A.I. Raafat, A.E. Ali, E.S.A. Soliman, J. Inorg. Organomet. Polym. Mater. 30, 2720–2735 (2020). https://doi.org/10.1007/s10904-020-01463-3

    Article  CAS  Google Scholar 

  10. R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.-G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, J. Sun, Ecotoxicol. Environ. Saf. 231, 113160 (2022). https://doi.org/10.1016/j.ecoenv.2021.113160

    Article  CAS  PubMed  Google Scholar 

  11. T.H.A. Nguyen, D.T. Quang, L.V. Tan, T.K. Vo, RSC Adv. 13, 5859–5868 (2023). https://doi.org/10.1039/D3RA00024A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. W. Chairungsri, A. Subkomkaew, P. Kijjanapanich, Y. Chimupala, Chemosphere 286, 131762 (2022). https://doi.org/10.1016/j.chemosphere.2021.131762

    Article  CAS  PubMed  Google Scholar 

  13. H. Subramanian, M. Krishnan, A. Mahalingam, RSC Adv. 12, 985–997 (2022). https://doi.org/10.1039/D1RA08196A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. T.G. Ambaye, K. Hagos, Nanotechnol Environ. Eng. 5, 28 (2020). https://doi.org/10.1007/s41204-020-00094-w

    Article  CAS  Google Scholar 

  15. A. Kubacka, U. Caudillo-Flores, I. Barba-Nieto, M. Fernandez-García, Appl. Catal. A: Gen. 610, 117966 (2021). https://doi.org/10.1016/j.apcata.2020.117966

    Article  CAS  Google Scholar 

  16. K.G. Motora, C.M. Wu, J. Taiwan, Inst. Chem. Eng. 117, 123–132 (2020). https://doi.org/10.1016/j.jtice.2020.12.006

    Article  CAS  Google Scholar 

  17. L. Yang, Z. Zhang, C. Zhang, S. Li, G. Liu, X. Wang, Inorg. Chem. Front. 9, 4824–4833 (2022). https://doi.org/10.1039/D2QI00838F

    Article  CAS  Google Scholar 

  18. J. Malik, S. Kumara, T.K. Mandal, Catal. Sci. Technol. 12, 6704–6716 (2022). https://doi.org/10.1039/D1CY01644J

    Article  CAS  Google Scholar 

  19. M.M. Ali, J.S.A. Nair, K.Y. Sandhya, Dyes Pigm 163, 274–284 (2019). https://doi.org/10.1016/j.dyepig.2018.11.057

    Article  CAS  Google Scholar 

  20. A. Pattnaik, J.N. Sahu, A.K. Poonia, P. Ghosh, Chem. Eng. Res. Des. 190, 667–686 (2023). https://doi.org/10.1016/j.cherd.2023.01.014

    Article  CAS  Google Scholar 

  21. S.A. Devi, K.J. Singh, K.N. Devi, Mater. Today: Proc. 65, 2819–2824 (2022). https://doi.org/10.1016/j.matpr.2022.06.270

  22. H. Zhang, X. Ji, H. Xu, R. Zhang, H. Zhang, J. Environ. Chem. Eng. 11, 109056 (2023). https://doi.org/10.1016/j.jece.2022.109056

    Article  CAS  Google Scholar 

  23. S. Dev, M. Singh, J. Phys. Chem. Solids 139, 109335 (2020). https://doi.org/10.1016/j.jpcs.2020.109335

    Article  CAS  Google Scholar 

  24. A.M. Ramesh, K. Pal, A. Kodandaram, B.L. Manjula, D.K. Ravishankar, H.G. Gowtham, M. Murali, A. Rahdar, G.Z. Kyzas, Green. Process. Synth. 11, 857–867 (2022). https://doi.org/10.1515/gps-2022-0075

    Article  CAS  Google Scholar 

  25. M. Sankar, M. Jothibas, A. Muthuvel, A. Rajeshwari, S.J. Jeyakumar, Surf. Interfaces 21, 100775 (2020). https://doi.org/10.1016/j.surfin.2020.100775

    Article  CAS  Google Scholar 

  26. F. Khodam, A.R. Amani-Ghadim, N.N. Ashan, A.T. Sareshkeh, F. Bayat, M. Gholinejad, M.S.S. Dorraji, J. Alloys Compd. 898, 162768 (2022). https://doi.org/10.1016/j.jallcom.2021.162768

    Article  CAS  Google Scholar 

  27. C. Zheng, Z. Wang, J. Yuan, Q. Xu, H. Li, X. Lu, J. Gao, W. Yue, RSC Adv. 13, 4173–4181 (2023). https://doi.org/10.1039/D2RA07108H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Z. Ye, L. Kong, F. Chen, Z. Chen, Y. Lin, C. Liu, Optik 164, 345–354 (2018). https://doi.org/10.1016/j.ijleo.2018.03.030

    Article  CAS  Google Scholar 

  29. T. Gupta, R.P. Chauhan, Opt. Mater. 135, 113295 (2023). https://doi.org/10.1016/j.optmat.2022.113295

    Article  CAS  Google Scholar 

  30. G. Hitkari, P. Chowdhary, V. Kumar, S. Singh, A. Motghare, Clean. Chem. Eng. 1, 100003 (2022). https://doi.org/10.1016/j.clce.2022.100003

    Article  Google Scholar 

  31. S.G. Shelar, V.K. Mahajan, S.P. Patil, G.H. Sonawane, SN Appl. Sci. 2, 820 (2020). https://doi.org/10.1007/s42452-020-2634-2

    Article  CAS  Google Scholar 

  32. A. Asghar, M.I. Yousaf, N.A. Shad, M.M. Sajid, A.M. Afzal, Y. Javed, A. Razzaq, M. Shariq, Q. Gulfam, M. Sarwar, S.K. Sharma, J. Clust Sci. 33, 2325–2335 (2022). https://doi.org/10.1007/s10876-021-02157-7

    Article  CAS  Google Scholar 

  33. K. Pal, A. Si, G.S. El-Sayyad, M. Abd Elkodous, R. Kumar, A.I. El-Batal, S. Kralj, S. Thomas, Crit. Rev. Solid State Mater. Sci. 46, 385–449 (2021). https://doi.org/10.1080/10408436.2020.1805295

    Article  CAS  Google Scholar 

  34. Q. Zhang, Y. Xiao, Y. Li, K. Zhao, H. Deng, Y. Lou, J. Chen, L. Cheng, Sol. RRL 4, 1900568 (2020). https://doi.org/10.1002/solr.201900568

    Article  CAS  Google Scholar 

  35. R.N. Juine, B.K. Sahu, A. Das, New. J. Chem. 45, 5845–5854 (2021). https://doi.org/10.1039/D1NJ00588J

    Article  CAS  Google Scholar 

  36. S. Muninathan, S. Arumugam, Int. J. Hydrog Energy 46, 6532–6546 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.178

    Article  CAS  Google Scholar 

  37. G.-J. Lee, J.J. Wu, Powder Technol. 318, 8–22 (2017). https://doi.org/10.1016/j.powtec.2017.05.022

    Article  CAS  Google Scholar 

  38. V. Kumar, D.K. Sharma, K. Sharma, D.K. Dwivedi, Optik 156, 43–48 (2018). https://doi.org/10.1016/j.ijleo.2017.10.169

    Article  CAS  Google Scholar 

  39. S.K. Pandey, P.K. Mishra, D. Tiwary, J. Environ. Chem. Eng. 10, 107459 (2022). https://doi.org/10.1016/j.jece.2022.107459

    Article  CAS  Google Scholar 

  40. J.G. Vijayan, T.N. Prabhu, A.G. Jineesh, K. Pal, S. Chakroborty, Eur. Phys. J. E 46, 23 (2023). https://doi.org/10.1140/epje/s10189-023-00278-7

    Article  CAS  PubMed  Google Scholar 

  41. K. Pal, S. Chakroborty, P. Panda, N. Nath, S. Soren, Environ. Sci. Pollut Res. 29, 76626–76643 (2022). https://doi.org/10.1007/s11356-022-23122-5

    Article  CAS  Google Scholar 

  42. N. Wetchakun, P. Wanwaen, S. Phanichphant, K. Wetchakun, RSC Adv. 7, 13911–13918 (2017). https://doi.org/10.1039/C6RA27138C

    Article  CAS  Google Scholar 

  43. M. Jothibas, S.J. Jeyakumar, C. Manoharan, I.K. Punithavathy, P. Praveen, J. Richard, J. Mater. Sci: Mater. Electron. 28, 1889–1894 (2017). https://doi.org/10.1007/s10854-016-5740-6

    Article  CAS  Google Scholar 

  44. B.L. Devi, K. Rao, D. Ramananda, Appl. Phys. A 126, 924 (2020). https://doi.org/10.1007/s00339-020-04107-y

    Article  CAS  Google Scholar 

  45. J. Aswathy, N.V. Seethalekshmy, K.R. Hiran, M.R. Bindhu, K. Manzoor, V.N. Shantikumar, M. Deepthy, Nanotechnology 25, 445102 (2014). DOI https://doi.org/10.1088/0957-4484/25/44/445102

    Article  CAS  PubMed  Google Scholar 

  46. H. Qu, L. Cao, G. Su, W. Liu, R. Gao, C. Xia, J. Qin, J. Nanopart. Res. 16, 2762 (2014). https://doi.org/10.1007/s11051-014-2762-y

    Article  CAS  Google Scholar 

  47. L.-N. Liu, J.-G. Dai, T.-J. Zhao, S.-Y. Guo, D.-S. Hou, P. Zhan, J. Shang, S. Wang, S. Han, RSC Adv. 7, 35075–35085 (2017). https://doi.org/10.1039/C7RA04259K

    Article  CAS  Google Scholar 

  48. A. Haghighatzadeh, M. Kiani, B. Mazinani, J. Dutta, J. Mater. Sci: Mater. Electron. 31, 1283–1292 (2020). https://doi.org/10.1007/s10854-019-02640-y

    Article  CAS  Google Scholar 

  49. P. Arumugam, P. Sengodan, N. Duraisamy, R. Rajendran, V. Vasudevan, Ionics 26, 4201–4212 (2020). https://doi.org/10.1007/s11581-020-03564-y

    Article  CAS  Google Scholar 

  50. M.A. Avilés, J.M. Cordobá, M.J. Sayagués, F.J. Gotor, Inorg. Chem. 58, 2565–2575 (2019). https://doi.org/10.1021/acs.inorgchem.8b03183

    Article  CAS  PubMed  Google Scholar 

  51. F. Kurnia, J.N. Hart, ChemPhysChem 16, 2397–2402 (2015). https://doi.org/10.1002/cphc.201500264

    Article  CAS  PubMed  Google Scholar 

  52. J. Hasan, J. Wang, Z. Wang, M. Idrees, S. Batool, C. Zhang, C. Qin, Environ. Sci. Pollut Res. 29, 12222–12236 (2022). https://doi.org/10.1007/s11356-021-16605-4

    Article  CAS  Google Scholar 

  53. P. Das, K. Tantubay, R. Ghosh, S. Dam, M. Baskey, Environ. Sci. Pollut Res. 28, 49125–49138 (2021). https://doi.org/10.1007/s11356-021-14068-1

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The study conception, design, material preparation, data collection and written of the final manuscript was performed by Ali Moulahi.

Corresponding author

Correspondence to Ali Moulahi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulahi, A. Cu Doped NiS/ZnS Nanocomposites for Photodegradation of Methyl Green, Methylene Blue and Congo Red Pollutants. J Inorg Organomet Polym 33, 3948–3960 (2023). https://doi.org/10.1007/s10904-023-02702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02702-z

Keywords

Navigation