Skip to main content

Advertisement

Log in

An effective strategy to enhance the photocatalytic performance by forming NiS/rGO heterojunction nanocomposites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Exploiting novel, low cost, and efficient photocatalysts for removal of pollutant waste water was significant to resolve the energy crisis and environment remediation. Here, we report the synthesis of nickel sulphide (NiS)/reduced graphene oxide (rGO)-based heterojunction photocatalyst using one step hydrothermal method. The intimate contact between NiS and rGO was suggested to quicken the transfer of photogenerated electrons from NiS to rGO, reducing the recombination of charge transporters and hence increasing the photocatalytic activities. The physico-chemical properties of the NiS/rGO heterojunction photocatalysts were scientifically studied with different characterization methods. The most efficient photocatalytic performances under solar light irradiation have been carefully assessed, and the NiS/rGO heterojunction nanocomposites exhibit photocatalytic degradation on methylene blue (MB). The removal percentage for MB can reach maximum at ~ 87% in ~ 100 min under solar light treatment. Moreover, the NiS/rGO heterojunction nanocomposite revealed highly stable for removing MB even after four successive experiments. Therefore, the experimental results demonstrated that the prepared NiS/rGO nanocomposites showed significant photocatalytic performance, thus supporting probable active heterojunction nanocomposite for energy conversion as well as in environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. You B, Liu X, Jiang N, Sun Y (2016) A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J Am Chem Soc 138:13639–13646. https://doi.org/10.1021/jacs.6b07127

    Article  CAS  PubMed  Google Scholar 

  2. Bagheri S, Termehyousefi A, Do TO (2017) Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach. Catal Sci Technol 7:4548–4569. https://doi.org/10.1039/c7cy00468k

    Article  CAS  Google Scholar 

  3. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278

    Article  CAS  Google Scholar 

  4. Jahurul Islam M, Amaranatha Reddy D, Han NS, Choi J, Song JK, Kim TK (2016) An oxygen-vacancy rich 3D novel hierarchical MoS2/BiOI/AgI ternary nanocomposite: enhanced photocatalytic activity through photogenerated electron shuttling in a Z-scheme manner. Phys Chem Chem Phys 18:24984–24993. https://doi.org/10.1039/c6cp02246d

    Article  CAS  PubMed  Google Scholar 

  5. Liu M, Sun J, Sun JDS et al (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5:14610–14630. https://doi.org/10.1039/c4ra13734e

    Article  Google Scholar 

  6. Islam MJ, Reddy DA, Choi J, Kim TK (2016) Surface oxygen vacancy assisted electron transfer and shuttling for enhanced photocatalytic activity of a Z-scheme CeO2-AgI nanocomposite. RSC Adv 6:19341–19350. https://doi.org/10.1039/c5ra27533d

    Article  CAS  Google Scholar 

  7. Lee S, Amaranatha Reddy D, Kim TK (2016) Well-wrapped reduced graphene oxide nanosheets on Nb3O7(OH) nanostructures as good electron collectors and transporters for efficient photocatalytic degradation of rhodamine B and phenol. RSC Adv 6:37180–37188. https://doi.org/10.1039/c6ra05169c

    Article  CAS  Google Scholar 

  8. Reddy DA, Choi J, Lee S, Kim TK (2016) Controlled synthesis of heterostructured Ag@AgI/ZnS microspheres with enhanced photocatalytic activity and selective separation of methylene blue from mixture dyes. J Taiwan Inst Chem Eng 66:200–209. https://doi.org/10.1016/j.jtice.2016.06.022

    Article  CAS  Google Scholar 

  9. Shajahan S, Arumugam P, Rajendran R, Ponnusamy Munusamy A (2017) Optimization and detailed stability study on Pb doped ceria nanocubes for enhanced photodegradation of several anionic and cationic organic pollutants. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.11.001

  10. Deng W, Zhao H, Pan F, Feng X, Jung B, Abdel-Wahab A, Batchelor B, Li Y (2017) Visible-light-driven photocatalytic degradation of organic water pollutants promoted by sulfite addition. Environ Sci Technol 51:13372–13379. https://doi.org/10.1021/acs.est.7b04206

    Article  CAS  PubMed  Google Scholar 

  11. Fabbri D, López-Muñoz MJ, Daniele A et al (2018) Photocatalytic abatement of emerging pollutants in pure water and wastewater effluent by TiO2 and Ce-ZnO: degradation kinetics and assessment of transformation products. Photochem Photobiol Sci. https://doi.org/10.1039/c8pp00311d

  12. Wu N (2018) Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale 10:2679–2696. https://doi.org/10.1039/c7nr08487k

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, Zhou H, Fan T, Zhang D (2014) Semiconductor photocatalysts for water oxidation: current status and challenges. Phys Chem Chem Phys 16:6810–6826. https://doi.org/10.1039/c4cp00246f

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Wu N (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5:1360–1384. https://doi.org/10.1039/c4cy00974f

    Article  CAS  Google Scholar 

  15. Priyadharsan A, Vasanthakumar V, Shanavas S et al (2019) Crumpled sheet like graphene based WO3-Fe2O3 nanocomposites for enhanced charge transfer and solar photocatalysts for environmental remediation. Appl Surf Sci 470:114–128. https://doi.org/10.1016/j.apsusc.2018.11.130

    Article  CAS  Google Scholar 

  16. Wei L, Yu C, Zhang Q et al (2018) TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J Mater Chem A 6:22411–22436. https://doi.org/10.1039/C8TA08879A

    Article  CAS  Google Scholar 

  17. Li D, Shi F, Jiang D et al (2017) CdIn2S4/g-C3N4 heterojunction photocatalysts: enhanced photocatalytic performance and charge transfer mechanism. RSC Adv 7:231–237. https://doi.org/10.1039/C6RA24809H

    Article  CAS  Google Scholar 

  18. Adhikari SP, Hood ZD, Chen VW et al (2018) Visible-light-active g-C3N4/N-doped Sr2Nb2O7 heterojunctions as photocatalysts for the hydrogen evolution reaction. Sustain Energy Fuels 2:2507–2515. https://doi.org/10.1039/C8SE00319J

    Article  CAS  Google Scholar 

  19. Hong E, Kim D, Kim JH (2014) Heterostructured metal sulfide (ZnS–CuS–CdS) photocatalyst for high electron utilization in hydrogen production from solar water splitting. J Ind Eng Chem 20:3869–3874. https://doi.org/10.1016/j.jiec.2013.12.092

    Article  CAS  Google Scholar 

  20. Priyadharsana A, Shanavasa S, Vasanthakumar V et al (2018) Synthesis and investigation on synergetic effect of rGO-ZnO decorated MoS2 microflowers with enhanced photocatalytic and antibacterial activity. Colloids Surf A Physicochem Eng Asp 559:43–53. https://doi.org/10.1016/j.colsurfa.2018.09.034

    Article  CAS  Google Scholar 

  21. Reddy DA, Choi J, Lee S et al (2015) Green synthesis of AgI nanoparticle-functionalized reduced graphene oxide aerogels with enhanced catalytic performance and facile recycling. RSC Adv 5:67394–67404. https://doi.org/10.1039/c5ra07267k

    Article  CAS  Google Scholar 

  22. Choi J, Reddy DA, Kim TK (2015) Enhanced photocatalytic activity and anti-photocorrosion of AgI nanostructures by coupling with graphene-analogue boron nitride nanosheets. Ceram Int 41:13793–13803. https://doi.org/10.1016/j.ceramint.2015.08.062

    Article  CAS  Google Scholar 

  23. Choi J, Reddy DA, Islam MJ et al (2015) Green synthesis of the reduced graphene oxide-CuI quasi-shell-core nanocomposite: a highly efficient and stable solar-light-induced catalyst for organic dye degradation in water. Appl Surf Sci 358:159–167. https://doi.org/10.1016/j.apsusc.2015.07.170

    Article  CAS  Google Scholar 

  24. Choi J, Reddy DA, Islam MJ et al (2016) Self-assembly of CeO2 nanostructures/reduced graphene oxide composite aerogels for efficient photocatalytic degradation of organic pollutants in water. J Alloys Compd 688:527–536. https://doi.org/10.1016/j.jallcom.2016.07.236

    Article  CAS  Google Scholar 

  25. Reddy DA, Lee S, Choi J et al (2015) Green synthesis of AgI-reduced graphene oxide nanocomposites: toward enhanced visible-light photocatalytic activity for organic dye removal. Appl Surf Sci 341:175–184. https://doi.org/10.1016/j.apsusc.2015.03.019

    Article  CAS  Google Scholar 

  26. Lakhera SK, Hafeez HY, Venkataramana R et al (2019) Design of a highly efficient ternary AgI/rGO/BiVO4 nanocomposite and its direct solar light induced photocatalytic activity. Appl Surf Sci 487:1289–1300. https://doi.org/10.1016/j.apsusc.2019.05.201

    Article  CAS  Google Scholar 

  27. Gunjakar JL, Kim IY, Lee JM et al (2013) Self-assembly of layered double hydroxide 2D nanoplates with graphene nanosheets: an effective way to improve the photocatalytic activity of 2D nanostructured materials for visible light-induced O2 generation. Energy Environ Sci 6:1008. https://doi.org/10.1039/c3ee23989f

    Article  CAS  Google Scholar 

  28. Yang J, Duan X, Guo W et al (2014) Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy 5:74–81. https://doi.org/10.1016/j.nanoen.2014.02.006

    Article  CAS  Google Scholar 

  29. Hafeez HY, Lakhera SK, Narayanan N, Harish S, Hayakawa Y, Lee BK, Neppolian B (2019) Environmentally sustainable synthesis of a CoFe2O4-TiO2/rGO ternary photocatalyst: a highly efficient and stable photocatalyst for high production of hydrogen (solar fuel). ACS Omega 4:880–891. https://doi.org/10.1021/acsomega.8b03221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nguyen DCT, Cho KY, Oh W-C (2017) Synthesis of mesoporous SiO2/Cu2O–graphene nanocomposites and their highly efficient photocatalytic performance for dye pollutants. RSC Adv 7:29284–29294. https://doi.org/10.1039/C7RA03526H

    Article  CAS  Google Scholar 

  31. An X, Yu JC (2011) Graphene-based photocatalytic composites. RSC Adv 1:1426. https://doi.org/10.1039/c1ra00382h

    Article  CAS  Google Scholar 

  32. Acharya S, Martha S, Sahoo PC, Parida K (2015) Glimpses of the modification of perovskite with graphene-analogous materials in photocatalytic applications. Inorg Chem Front 2:807–823. https://doi.org/10.1039/C5QI00124B

    Article  CAS  Google Scholar 

  33. Singh A, Sinha ASK (2018) Active CdS/rGO photocatalyst by a high temperature gas-solid reaction for hydrogen production by splitting of water. Appl Surf Sci 430:184–197. https://doi.org/10.1016/j.apsusc.2017.02.214

    Article  CAS  Google Scholar 

  34. Bagherzadeh M, Kaveh R (2018) A new SnS2-BiFeO3/reduced graphene oxide photocatalyst with superior photocatalytic capability under visible light irradiation. J Photochem Photobiol A Chem 359:11–22. https://doi.org/10.1016/j.jphotochem.2018.03.031

    Article  CAS  Google Scholar 

  35. Bu Y, Li F, Zhang Y et al (2016) Immobilizing CdS nanoparticles and MoS2/RGO on Zr-based metal–organic framework 12-tungstosilicate@UiO-67 toward enhanced photocatalytic H2 evolution. RSC Adv 6:40560–40566. https://doi.org/10.1039/C6RA05522B

    Article  CAS  Google Scholar 

  36. Qin Y, Sun Z, Zhao W et al (2017) Improved photocatalytic properties of ZnS/RGO nanocomposites prepared with GO solution in degrading methyl orange. Nano-Structures Nano-Objects 10:176–181. https://doi.org/10.1016/j.nanoso.2017.05.005

    Article  CAS  Google Scholar 

  37. Dong X, Deng Z-P, Huo L-H et al (2019) Large-scale synthesis of NiS@N and S co-doped carbon mesoporous tubule as high performance anode for lithium-ion battery. J Alloys Compd 788:984–992. https://doi.org/10.1016/j.jallcom.2019.02.326

    Article  CAS  Google Scholar 

  38. Wei C, Cheng C, Cheng Y et al (2015) Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment. Dalton Trans 44:17278–17285. https://doi.org/10.1039/C5DT02724A

    Article  CAS  PubMed  Google Scholar 

  39. Han C, Yang M-Q, Zhang N, Xu Y-J (2014) Enhancing the visible light photocatalytic performance of ternary CdS–(graphene–Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy. J Mater Chem A 2:19156–19166. https://doi.org/10.1039/C4TA04151H

    Article  CAS  Google Scholar 

  40. Shanavas S, Priyadharsan A, Gkanas EI et al (2019) High efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: kinetics, intermediates and mechanism. J Ind Eng Chem 72:512–528. https://doi.org/10.1016/j.jiec.2019.01.008

    Article  CAS  Google Scholar 

  41. Lu Z, Song W, Ouyang C et al (2017) Enhanced visible-light photocatalytic performance of highly-dispersed Pt/g-C3N4 nanocomposites by one-step solvothermal treatment. RSC Adv 7:33552–33557. https://doi.org/10.1039/c7ra04931e

    Article  CAS  Google Scholar 

  42. Chowdhury P, Gomaa H, Ray AK (2013) Dye-sensitized photocatalyst: a breakthrough in green energy and environmental detoxification. pp 231–266

  43. Faraji M, Yousefi M, Yousefzadeh S et al (2019) Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ Sci 12:59–95. https://doi.org/10.1039/C8EE00886H

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Navaneethan Duraisamy acknowledges the DST, New Delhi, India, for the DST Inspire Faculty award (DST/INSPIRE/04/2018/001444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navaneethan Duraisamy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, P., Sengodan, P., Duraisamy, N. et al. An effective strategy to enhance the photocatalytic performance by forming NiS/rGO heterojunction nanocomposites. Ionics 26, 4201–4212 (2020). https://doi.org/10.1007/s11581-020-03564-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03564-y

Keywords

Navigation