Skip to main content
Log in

Nanoarchitectonics of PEG-Coated Ni-Zn Ferrite Nanoparticles and Mechanical Analysis of Heat Generation by Magnetic Relaxation

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The magnetic relaxation of magnetic nanoparticles (MNPs) has been used as a potential heating agent for magnetic hyperthermia treatment (MHT). This requires an understanding of the heating mechanism of MNPs, such as Néel relaxation; however, few studies about magnetic relaxation using a low-frequency AC magnetic field have been reported. This study attempts to clarify the correlation between the dominance of Néel relaxation in low-frequency AC fields and the magnetic properties. Nanoparticles of Ni0.8Zn0.2Fe2O4 coated with poly(ethylene glycol) (PEG) were synthesized in various sizes (d = 12, 15, and 19 nm), and were subjected to structural analysis, PEG modification, and magnetic measurements. The PEG400 coating results in a hydrodynamic diameter ten times smaller than that of our previous sample. The heat generation experiment was conducted on samples suspended in solvents of different viscosities in the presence of an AC field (h = 3.2 kAm−1, f = 90 kHz). The specific absorption rate (SAR) as a function of the viscosity of the 15-nm NP sample is consistent with the theoretically calculated value in cases where the Néel relaxation is dominant. Therefore, we conclude that the Néel relaxation dominates the heating mechanism of the 15 nm sample. Rather than being fully superparamagnetic, this sample was partly superparamagnetic and slightly ferromagnetic, with the dominance of the Néel relaxation to a certain degree affected by spin blocking. Detailed analysis of the magnetic relaxation is crucial to improve the heating efficiency of MNPs for MHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Yoo, J.H. Lee, T.H. Shin, J. Cheon, Acc. Chem. Res. 44, 863 (2011)

    Article  CAS  Google Scholar 

  2. Z. Shen, A. Wu, X. Chen, Mol. Pharm. 14, 1352 (2017)

    Article  CAS  Google Scholar 

  3. K. Wu, D. Su, J. Liu, R. Saha, J.-P. Wang, Nanotechnology 30, 50 (2019)

    Google Scholar 

  4. P. Das, M. Colombo, D. Prosperi, Coll. Surf. B 174, 42 (2019)

    Article  CAS  Google Scholar 

  5. A.E. Deatsch, B.A. Evans, J. Magn. Magn. Mater. 354, 163 (2014)

    Article  CAS  Google Scholar 

  6. J. Beik, Z. Abed, F.S. Ghoreishi, S. Hosseini-Nami, S. Mehrzadi, A. Shakeri-Zadeh, S. Kamran, J. Contr. Rel. 235, 205 (2006)

    Article  Google Scholar 

  7. R. Joshi, B. Pratap Singh, R.S. Ningthoujam, AIP Adv. 10, 105033 (2020)

    Article  CAS  Google Scholar 

  8. T. Kondo, K. Mori, M. Hachisu, T. Yamazaki, D. Okamoto, M. Watanabe, K. Gonda, H. Tada, Y. Hamada, M. Takano, N. Ohuchi, Y. Ichiyanagi, J. Appl. Phys. 117, 17D157 (2015)

    Article  Google Scholar 

  9. D. Shigeoka, T. Yamazaki, T. Ishikawa, K. Miike, K. Fujiwara, T. Ide, A. Oshima, T. Hashimoto, D. Aihara, K. Kanda, A. Usui, Y. Hosokai, H. Saito, Y. Ichiyanagi, IEEE Trans. Magn. 54, 6100707 (2018)

    Article  Google Scholar 

  10. R. Hergt, S. Dutz, J. Magn. Magn. Mater. 311, 187 (2007)

    Article  CAS  Google Scholar 

  11. L.H. Nguyen, T.P. Pham, N.H. Pham, D.H. Manh, N.K.T. Thi, L.D. Tung, X.P. Nguyen, Materials 14, 1875 (2021)

    Article  CAS  Google Scholar 

  12. S. Ota, Y. Takemuara, J. Magn. Soc. Jpn. 43, 34 (2019)

    Article  Google Scholar 

  13. E. Lima Jr., E.D. Biasi, R.D. Zysler, M.V. Mansilla, M.L. Mojica-Pisciotti, T.E. Torres, M.P. Calatayud, C. Marquina, M.R. Ibarra, G.F. Goya, J. Nanopart. Res. 16, 2791 (2014)

    Article  Google Scholar 

  14. S. Tong, C.A. Quinto, L. Zhang, P. Mohindra, G. Bao, ACS Nano 11, 6808 (2017)

    Article  CAS  Google Scholar 

  15. L. Tonthat, Y. Yamamoto, K. Mitobe, S. Yabukami, AIP Adv. 10, 125324 (2020)

    Article  CAS  Google Scholar 

  16. E. Cazares-Cortes, S. Cabana, C. Boitard, E. Nehlig, N. Griffete, J. Fresnais, C. Wilhelm, A. Abou-Hassan, C. Ménager, Adv. Drug Deliv. Rev. 138, 233 (2019)

    Article  CAS  Google Scholar 

  17. R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370–374 (2002)

    Article  CAS  Google Scholar 

  18. M. Suto, Y. Hirota, H. Mamiya, A. Fujita, R. Kasuya, K. Tohji, B. Jeyadevan, J. Magn. Magn. Mater. 321, 1493 (2009)

    Article  CAS  Google Scholar 

  19. S. Verma, A. Khosla, S. Arya, J. Mater. Res. Technol. 11, 564 (2021)

    Article  CAS  Google Scholar 

  20. S. Khan, S. Arya, P. Lehana, S. Kumar, Bull. Mater. Sci. 37, 889 (2014)

    Article  CAS  Google Scholar 

  21. H. Ghayour, M. Abdellahi, N. Ozada, S. Jabbrzare, A. Khandan, J. Phys. Chem. Solids 111, 464 (2017)

    Article  CAS  Google Scholar 

  22. A. Ahmad, H. Bae, I. Rhee, S. Hong, J. Magn. Magn. Mater. 447, 42 (2018)

    Article  CAS  Google Scholar 

  23. Y. Jia, D.-H. Kim, T. Lee, S. Kang, B.W. Lee, S.J. Rhee, C. Liu, RSC Adv. 6, 76542 (2016)

    Article  CAS  Google Scholar 

  24. B. Dutta, N.G. Shetake, S.L. Gawali, B.K. Barick, K.C. Barick, P.D. Babu, B.N. Pandey, K.I. Priyadarsini, P.A. Hassan, J. Alloys Compd. 737(3), 347 (2018)

    Article  CAS  Google Scholar 

  25. S.M. Hoque, M. Tariq, S.I. Liba, F. Salehin, Z.H. Mahmood, M.N.I. Khan, K. Chattopadhayay, R. Islam, S. Akhte, Nanotechnology 27, 285702 (2016)

    Article  Google Scholar 

  26. M. Rashmi, V. Karthikeyan, N. Velu, C. Arumugam, V.A.L. Roy, A.-I. Gopalan, G. Saianand, P. Sonar, K.-P. Lee, W.-J. Kim, D.-E. Lee, V. Kannan, Nanomaterials 11, 440 (2021)

    Article  Google Scholar 

  27. A. Oshima, K. Kanda, K. Fujiwara, T. Ide, M. Takano-Kasuya, Y. Ichiyanagi, J. Nanosci. Nanotechnol. 20, 7255 (2020)

    Article  CAS  Google Scholar 

  28. Kh. Roumaih, M. Yehia, H.E. Hassan, J. Inorg. Organomet. Polym. Mater. 30, 3142 (2020)

    Article  Google Scholar 

  29. W.R. Rolim, M.T. Pelegrino, B.A. Lima, L.S. Ferraz, F.N. Costa, J.S. Bernardes, T. Rodigues, M. Brocchi, A.B. Seabra, Appl. Surf. Sci. 463, 66–74 (2019)

    Article  CAS  Google Scholar 

  30. S.K. Jose, A. George, A. Jose, C. Joseph, N.V. Unnikrishnan, P.R. Biju, J. Mater. Sci.: Mater. Electron. 32, 9755 (2021)

    CAS  Google Scholar 

  31. X. Zhang, R. Zhang, S. Hu, Res. Chem. Intermed. 37, 405 (2011)

    Article  CAS  Google Scholar 

  32. F. Diab, E. Provosta, N. Lalouéb, P. Alixb, V. Souchonb, O. Delpouxb, W. Fürsta, Fluid Phase Equilib. 325, 90 (2012)

    Article  CAS  Google Scholar 

  33. A. Manohar, C. Krishnamoorthi, Mater. Chem. Phys. 192, 235 (2017)

    Article  CAS  Google Scholar 

  34. R. Topkaya, A. Baykal, A. Demir, J. Nanopart. Res. 15, 1359 (2013)

    Article  Google Scholar 

  35. H. Sasaki, O.J.P. Perez, B. Jeyadevan, K. Tohji, A. Kasuya, J. Jpn. Soc. Powder Metall. 49, 2 (2001)

    Google Scholar 

Download references

Funding

This study was partially supported by Precursory Research for Embryonic Science and Technology at the Japan Science and Technology Agency (JST), JST-Mirai Program No.JPMJMI17D7, Grant-in-Aid for Science Research (No. 17H02762, No. 20H00344) from the Japan Society for the Promotion of Science (JSPS), Program for Strategic Promotion of Bridging Research at the Japan Agency for Medical Research Development (AMED), and the Collaborative Research Project of the Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology. The authors wish to thank Mr. Kondo and Ms. Kaneda for taking the TEM images of the Ni0.8Zn0.2Fe2O4 NPs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Kodama.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodama, K., Hamada, S., Nashimoto, K. et al. Nanoarchitectonics of PEG-Coated Ni-Zn Ferrite Nanoparticles and Mechanical Analysis of Heat Generation by Magnetic Relaxation. J Inorg Organomet Polym 32, 3292–3300 (2022). https://doi.org/10.1007/s10904-022-02372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02372-3

Keywords

Navigation