Skip to main content
Log in

Synthesis of copper-ferrous (CuFe) nanowires via electrochemical method and its investigations as a fluid sensor

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The special behaviour of nanowires with respect to electrical conductivity makes them suitable for sensing application. In this paper, we present a copper-ferrous (CuFe) nanowires based sensor for detection of chemicals. CuFe nanowires were synthesized by template-assisted electrochemical method. By optimizing the deposition parameters, continuous nanowires on a copper substrate were synthesized. The morphological and structural studies of the synthesized CuFe nanowires were carried out using scanning electron microscope (SEM) and X-ray diffraction (XRD). Substrates containing CuFe nanowires were moulded to form a capacitor. Different chemicals were used as dielectric in the capacitor which showed that the capacitance was a nonlinear function of the dielectric constant of fluid unlike the linear relation shown by conventional capacitors. This unique property of the nanowires based capacitors may be utilized for developing fluid sensors with improved sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Arya, S., Lehana, P. et al. Synthesis of copper-ferrous (CuFe) nanowires via electrochemical method and its investigations as a fluid sensor. Bull Mater Sci 37, 889–893 (2014). https://doi.org/10.1007/s12034-014-0022-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0022-5

Keywords

Navigation