Skip to main content
Log in

Synthesis, Surface Morphology, Gas Sensor, DSC Technique and Third-Order Behavior of Conducting Polymer

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The compound polyaniline (Poly-ANI) with different concentrations of (H2SO4) sulfuric acid has been synthesized by the chemical polymerization method. The prepared compounds have been characterized using number of techniques including FTIR, FE-SEM, EDS and DSC. Additionally, UV–Vis spectroscopy employed for studying the linear optical properties of polymer with different acid concentrations. Third order optical nonlinearity was characterized using Z-scan at 532 nm. The results showed that the nonlinear refractive index has a negative sign. It was observed that the nonlinear refractive index changes in different ratios of H2SO4. The high value of nonlinear refractive index (\(n_{2}\)) obtained along Z-axis is \(74.62 \times 10^{ - 7}\) cm2/W, and the corresponding \(\chi^{3}\) is 21.5 × 10−5 esu. Also, the Poly-ANI film shows the response to NH3 gas sensing in the range 20 ppm-250 ppm and can be used for NH3 sensing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132. https://doi.org/10.1016/j.toxlet.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  2. Alfano B, Massera E, De Maria A, De Girolamo A, Di Francia G, Veneri PD, Napolitano T, Borriello A (2015) Polyaniline proton doping for sensor application. XVIII AISEM Annual Conference, 1–4. https://doi.org/10.1109/AISEM.2015.7066824

  3. Quijada C (2020) Special issue: Conductive polymers: Materials and applications. Materials 13:2344–2347. https://doi.org/10.3390/ma13102344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abdolahi A, Hamzah E, Ibrahim Z, Hashim S (2012) Synthesis of uniform polyaniline nanofibers through interfacial polymerization. Materials 5:1487–1494. https://doi.org/10.3390/ma5081487

    Article  CAS  PubMed Central  Google Scholar 

  5. Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN (2021) Preparations, properties, and applications of polyaniline and polyaniline thin films-a review. Polymers 13:2003–2049. https://doi.org/10.3390/polym13122003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin YC, Zhong XX, Huang HX, Wang HQ, Feng QP, Li QY (2016) Preparation and application of polyaniline doped with different sulfonic acids for supercapacitor. Acta Phys Chim Sin 32:474–480. https://doi.org/10.3866/PKU.WHXB201511104

    Article  CAS  Google Scholar 

  7. Li Z, Gong L (2020) Research progress on applications of polyaniline for electrochemical energy storage and conversion. Materials 13:548. https://doi.org/10.3390/ma13030548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sibaja SBB, Ramírez DP, Huerta AMT, Crespo MAD, Rosales HJD, Salazar AER, Meneses ER (2021) Cvd conditions for mwcnts production and their effects on the optical and electrical properties of ppy/mwcnts, pani/mwcnts nanocomposites by in situ electropolymerization. Polymers 13:351. https://doi.org/10.3390/polym13030351

    Article  CAS  Google Scholar 

  9. Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nano-fiber gas sensors: Examination of esponse mechanisms. Nano Lett 4:49–496. https://doi.org/10.1021/nl035122e

    Article  CAS  Google Scholar 

  10. Stejskal J, Kratochvil P, Jenkins AD (1996) The formation of polyaniline and the nature of its structures. Polymer 37:367. https://doi.org/10.1016/0032-3861(96)81113-x

    Article  CAS  Google Scholar 

  11. Zare EN, Motahari A, Sillanpää M (2018) Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Env Res 162:173–195. https://doi.org/10.1016/j.envres.2017.12.025

    Article  CAS  Google Scholar 

  12. Liu S, Ma Y, Cui M, Luo X (2018) Enhanced electrochemical biosensing of alpha-fetoprotein based on three-dimensional macroporous conducting polymer polyaniline. Sens Act B Chem 255:2568–2574. https://doi.org/10.1016/j.snb.2017.09.062

    Article  CAS  Google Scholar 

  13. Lyu H (2020) Triple layer tungsten trioxide, graphene, and polyaniline composite films for combined energy storage and electrochromic applications. Polymers 12:49. https://doi.org/10.3390/polym12010049

    Article  CAS  Google Scholar 

  14. Silakhori M, Naghavi M, Metselaar H, Mahlia T, Fauzi H, Mehrali M (2013) Accelerated thermal cycling test of microencapsulated paraffin wax/polyaniline made by simple preparation method for solar thermal energy storage. Materials 6:1608–1620. https://doi.org/10.3390/ma6051608

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen CL, Hwang SR, Li WH, Lee KC, Chi GC, Haiso HT, Wu CG (2002) Enhanced electroluminescence of polymer light-emitting diodes with direct polyaniline synthesized anodes. Polym J 34:271–274. https://doi.org/10.1295/polymj.34.271

    Article  CAS  Google Scholar 

  16. Jang C, Park JK, Yun GH, Choi HH, Lee HJ, Yook JG (2020) Radio-frequency/microwave gas sensors using conducting polymer. Materials 13:2859. https://doi.org/10.3390/ma13122859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramanavicius S, Ramanavicius A (2021) Conducting polymers in the design of biosensors and biofuel cells. Polymers 13:49. https://doi.org/10.3390/polym13010049

    Article  CAS  Google Scholar 

  18. Zarach Z, Trzcinski K, Łapinski M, Lisowska-Oleksiak A, Szkoda M (2020) Improving the performance of a graphite foil/polyaniline electrode material by a thin PEDOT:PSS layer for application in flexible, high power supercapacitors. Materials 13:5791. https://doi.org/10.3390/ma13245791

    Article  CAS  PubMed Central  Google Scholar 

  19. Shah AHA, Kamran M, Bilal S, Ullah R (2019) Cost effective chemical oxidative synthesis of soluble and electroactive polyaniline salt and its application as anticorrosive agent for steel. Materials 12:1527. https://doi.org/10.3390/ma12091527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Llorens E, Armelin E, Pérez MDM, del Valle L, Alemán C, Puiggalí J (2013) Nanomembranes and nanofibers from biodegradable conducting polymers. Polymers 5(1115):1157. https://doi.org/10.3390/polym5031115

    Article  CAS  Google Scholar 

  21. Prabhakar PK, Raj S, Anuradha PR, Sawant SN, Doble M (2011) Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Colloids Surf B Biointerfaces 86:146–153

    Article  CAS  PubMed  Google Scholar 

  22. Kolla HS, Surwade SP, Zhang X, MacDiarmid AG, Manohar SK (2005) Absolute molecular weight of polyaniline. J Am Chem Soc 127:16770–16771. https://doi.org/10.1021/ja055327k

    Article  CAS  PubMed  Google Scholar 

  23. Arbizzani C et al (1997) Handbook of organic conductive molecules and polymers. Volume 4, Conductive Polymers: Transport, Photophysics and Applications pp. 505–572, Wiley, Chichester

  24. Levi BG (2000) Nobel Prize in chemistry salutes the discovery of conducting polymer. Phys Today 53:19–22. https://doi.org/10.1063/1.1341909

    Article  Google Scholar 

  25. MacDiarmid AG (2001) “Synthetic Metals”: A novel role for organic polymers, Angew. Chem. Int Ed 40:2581–2590. https://doi.org/10.1002/1521-3773(20010716)40:14

    Article  CAS  Google Scholar 

  26. Sommer A, Bothschafter EM, Sato SA, Jakubeit C, Latka T, Razskazovskaya O, Fattahi H, Jobst M, Schweinberger W, Shirvanyan V, Yakovlev VS, Kienberger R, Yabana K, Karpowicz N, Schultze M, Krausz F (2016) Attosecond nonlinear polarization and light–matter energy transfer in solids. Nature 534:86–90

    Article  CAS  PubMed  Google Scholar 

  27. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5:37553–37567

    Article  CAS  Google Scholar 

  28. Sezer A, Gurudas U, Collins B, Mckinlay A, Bubb DM (2009) Nonlinear optical properties of conducting polyaniline and polyaniline-Ag composite thin films. Chem Phys Lett 477:164–168

    Article  CAS  Google Scholar 

  29. Samaneh T, Yasser R, Mahdi A (2019) Enhanced nonlinear optical properties of ZnO:WO3 Nanocomposites. J Nanophoton 13:016003. https://doi.org/10.1117/1.JNP.13.016003

    Article  Google Scholar 

  30. Samaneh D, Yasser R, Ehsan NZ (2021) Thermal lensing effect in laser nanofluids based on poly (aniline-co-ortho phenylenediamine)@TiO2 interaction. J Electron Mater 50:4896–4907. https://doi.org/10.1007/s11664-021-09028-x

    Article  CAS  Google Scholar 

  31. Lakouraj MM, Zare EN, Moghadam PN (2014) Synthesis of novel conductive poly(p phenylenediamine) /Fe3O4 nanocomposite via emulsion polymerization and investigation of antioxidant activity. Adv Polym Technol 33:21385

    Article  Google Scholar 

  32. Saifollah R, Yasser R, Sarabi H (2013) Microlenses focal length measurement using Z-scan and parallel moiré deflectometry. Opt Lasers Eng 51:1321–1326. https://doi.org/10.1016/j.optlaseng.2013.05.012

    Article  Google Scholar 

  33. Yilmaz F (2007) Polyaniline: Synthesis, Characterization, solution properties and composites. Nat Appl Sci (Middle East Technical University) 148

  34. Richardson MJ, Johnston JH, Borrmann T (2006) Electronic properties of intrinsically conducting polymer-cellulose based composites. Curr Appl Phys 6:462–465. https://doi.org/10.1016/j.cap.2005.11.040

    Article  Google Scholar 

  35. YuanY WuH, Bu X, Wu Q, Wang X, Han C, Li X, Wang X, Liu W (2021) Improving ammonia detecting performance of polyaniline decorated rGO composite membrane with GO doping. Materials 14:2829. https://doi.org/10.3390/ma14112829

    Article  CAS  Google Scholar 

  36. Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN (2003) Preparations, properties, and applications of polyaniline and polyaniline thin films-a review. Polymers 2021:13. https://doi.org/10.3390/polym13122003

    Article  CAS  Google Scholar 

  37. Neelgund GM, Oki A (2011) A facile method for the synthesis of polyaniline nanospheres and the effect of doping on their electrical conductivity. Polym Int 60:1291–1295. https://doi.org/10.1002/pi.3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: Facile synthesis and chemical sensors. J Am Chem Soc 125:314–315. https://doi.org/10.1021/ja028371y

    Article  CAS  PubMed  Google Scholar 

  39. Casado UM, Quintanilla RM, Aranguren MI, Marcovich NE (2012) Composite films based on shape memory polyurethanes and nanostructured polyaniline or cellulose–polyaniline particles. Synth Met 162:1654–1664. https://doi.org/10.1016/j.synthmet.2012.07.020

    Article  CAS  Google Scholar 

  40. Yang L, Sen Zhang C (2011) Effect of dopants on microstructure and properties of polyaniline and polypyrrole. Adv Mater Res 328–330:1576–1579. https://doi.org/10.4028/www.scientific.net/AMR.328-330.1576

    Article  CAS  Google Scholar 

  41. Danley RL (2003) New heat flux DSC measurement technique. Thermochim Acta 395:201–208. https://doi.org/10.1016/S0040-6031(02)00212-5

    Article  CAS  Google Scholar 

  42. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin, pp 777–800

    Google Scholar 

  43. Yang Y, Heeger AJ (1994) Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency. Appl Phys Lett 64:1245–1247. https://doi.org/10.1063/1.110853

    Article  CAS  Google Scholar 

  44. Haider MS, Khan IA, Jaskani MJ, Naqvi SA, Khan MM (2014) Biochemical attributes of dates at three maturation stages. Emirates J Food Agric 26:953–962. https://doi.org/10.9755/ejfa.v26i11.18980

    Article  Google Scholar 

  45. Guizani N, Al-Saidi G, Rahman M, Bornaz S, Al-Alawi A (2010) State diagram of dates: Glass transition, freezing curve and maximal-freeze-concentration condition. J Food Eng 99:92–97. https://doi.org/10.1016/j.jfoodeng.2010.02.003

    Article  Google Scholar 

  46. Rahman MS (2004) State diagram of date flesh using differential scanning calorimetry(DSC). Int J Food Prop 7:407–428. https://doi.org/10.1081/JFP-200032930

    Article  Google Scholar 

  47. Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301. https://doi.org/10.1016/S0167-5729(02)00077-8

    Article  CAS  Google Scholar 

  48. Giessibl FJ, Quate CF (2006) Exploring the nanoworld with atomic force microscopy. Phys Today 59:44–50. https://doi.org/10.1063/1.2435681

    Article  CAS  Google Scholar 

  49. Bustamante C, Rivetti C, Keller DJ (1997) Scanning force microscopy under aqueous solutions. Curr Opin Struct Biol 7:709–716. https://doi.org/10.1016/s0959-440x(97)80082-6

    Article  CAS  PubMed  Google Scholar 

  50. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933. https://doi.org/10.1103/PhysRevLett.56.930

    Article  CAS  Google Scholar 

  51. Hussain AB (2015) Thermal properties of a new dye compound measured by thermal lens effect and Z- scan technique. Appl Phys B 119:319–326. https://doi.org/10.1007/s00340-015-6068-2

    Article  CAS  Google Scholar 

  52. Alfahed RKF, Ahmed SA, Hussain AB, Khalid IA (2019) Structural, morphological, and Z-scan technique for a temperaturecontrollable chemical reaction synthesis of zinc sulfide nanoparticles. Appl Phys B 125:48 (11 pages). https://doi.org/10.1007/s00340-019-7154-7

    Article  CAS  Google Scholar 

  53. Hussain AB, Al-Fregi AA, Alfahed RKF, Al-Asadi AS (2017) Study of thermal lens technique and third-order nonlinear susceptibility of PMMA base containing 5′,5′′-dibromo-o cresolsulfophthalein. J Mater Sci: Mater Electron 28:17288–17296. https://doi.org/10.1007/s10854-017-7661-4

    Article  CAS  Google Scholar 

  54. Hussain AB, Hanan AA, Alfahed RKF, Khalid IA (2021) Second-order hyperpolarizability and nonlinear optical properties of novel organic compound-doped poly (O-methoxyaniline) polymer film. J Mater Sci: Mater Electron 32:14623–14641. https://doi.org/10.1007/s10854-021-06021-2

    Article  CAS  Google Scholar 

  55. Alfahed RKF, Imran A, Hussain AB, Al-Salihi A (2020) Synthesis, optical limiting behavior, thermal blooming and nonlinear studies of dye-doped polymer films. J Mater Sci: Mater Electron 31:13862–13873. https://doi.org/10.1007/s10854-020-03946-y

    Article  CAS  Google Scholar 

  56. Raed KFA, Imran A, Majeed MS, Hussain AB (2020) Photoluminescence characterizations and nonlinear optical of PM-355 nuclear trackdetector film by alpha-particles and laser Irradiation. Phys Scr 95:075709 (8pp). https://doi.org/10.1088/1402-4896/ab7e33

    Article  CAS  Google Scholar 

  57. Hussain AB, Taha AY, Abdulkader AF, Emshary CA (2012) Preparation and study of the electrical andoptical properties of a new azo dye (4-Acetaminophenol – [2-(4-Azo)]-4- amino dipheylsulfone). J Ovonic Res 8:161–170

    Google Scholar 

  58. Asal NG, Yasser R, Ehsan NZ (2020) Nonlinear optical properties of poly(aniline-co-pyrrole)@ ZnO-based nanofluid. Opt Mater 102:109835. https://doi.org/10.1016/j.optmat.2020.109835

    Article  CAS  Google Scholar 

  59. Sheik-Bahae M, Said AA, Wei T, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–766. https://doi.org/10.1109/3.53394

    Article  CAS  Google Scholar 

  60. Shengwen Q, Xiuqin Y, Rui L, Kuan C, Chunping Z, Jianguo T, Jingjun X, Qiang W (2004) Nonlinear optical properties of mercury dithizonation in a polymer film. J Modern Opt 51:1671–1677. https://doi.org/10.1080/09500340408232481

    Article  Google Scholar 

  61. Sheik-Bahae M, Said AA, Van Stryland EW (1989) High-sensitivity single beam n2 measurements. Opt Lett 14:955–960. https://doi.org/10.1364/OL.14.000955

    Article  CAS  PubMed  Google Scholar 

  62. Hussain AB (2014) Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel. Results Physics 4:69–72. https://doi.org/10.1016/j.rinp.2014.05.004

    Article  Google Scholar 

  63. Hasan HA, Nadia AHA, Hussain AB, Alfahed RK, Khalid IA (2023) Effects of temperature on structural and linear/nonlinear optical properties of CdS nanoparticles film deposited by chemical reaction method. Opt Quant Electron 55:555. https://doi.org/10.1007/s11082-023-04835-4

    Article  CAS  Google Scholar 

  64. Badran HA, Abu Talib YA, Al-Fahed RKF (2021) Study the effect of concentration on the evolution of far-field diffraction patterns of bromocresol purple and congo red solution. J Phys: Conf Ser 1963:012013. https://doi.org/10.1088/1742-6596/1963/1/012013

    Article  CAS  Google Scholar 

  65. AL-Ahmad AY, AL-Mudhaffer MF, Badran HA, Emshary CA (2013) Nonlinear optical and thermal properties of BCP:PMMA films determined by thermal self-diffraction. Opt Laser Technol 54:72–78. https://doi.org/10.1016/j.optlastec.2013.05.009

    Article  CAS  Google Scholar 

  66. Alfahed RKF, Badran HA, Abu Talib YA, Noor AS (2021) Investigation of third order nonlinearity of Ethidium bromide doped deoxyribonucleic acid (DNA). J Phys: Conf Ser 1963:012136. https://doi.org/10.1088/1742-6596/1963/1/012136

    Article  CAS  Google Scholar 

  67. Hamid D, Mehdi A, Yasser R (2019) Characterization of nonlinear optical refractive index for graphene oxide–silicon oxide nanohybrid composite. J Nonlinear Opt Phys Mater 28:1950005. https://doi.org/10.1142/S021886351950005X

    Article  CAS  Google Scholar 

  68. Hussain AB, AL-Aladil K, Lazim HG, Al-Ahmad AY (2016) Thermal blooming and photoluminescence characterizations of sol–gel CdO–SiO2 with different nanocomposite. J Mater Sci: Mater Electron 27:2212–2220. https://doi.org/10.1007/s10854-015-4013-0

    Article  CAS  Google Scholar 

  69. Mahdi S, Yasser R, Mahdi A (2021) Influence of preparation method on the structural, linear, and nonlinear optical properties of TiN nanoparticles. J Mater Sci: Mater Electron 32:19455–19477. https://doi.org/10.1007/s10854-021-06463-8

    Article  CAS  Google Scholar 

  70. Hussain AB, Hussain FH, Khalid IA (2016) Nonlinear characterization of conducting polymer and electrical study for application as solar cells and its antibacterial activity. Optik 127:5301–5309. https://doi.org/10.1016/j.ijleo.2016.03.030

    Article  CAS  Google Scholar 

  71. Al-hazam HA, Alfahed RKF, Imran A, Badran HA, Hussein SS, Alsalihi A, Khalid IA (2019) Preparation and optoelectronic studies of the organic compound [2-(2,3-dimethyl- phenylamino) -N-Phenyl benzamide doped(PMMA)]. J Mater Sci: Mater Electron 30:10284–10292. https://doi.org/10.1007/s10854-019-01365-2

    Article  CAS  Google Scholar 

  72. Hussain AB, Al-Maliki A, Alfahed RKF, Saeed BA, Al-Ahmad AY, Al-Saymari FA, Elias RS (2018) Synthesis, surface profile, nonlinear reflective index and photophysical properties of curcumin compound. J Mater Sci: Mater Electron 29:10890–10903. https://doi.org/10.1007/s10854-018-9167-0

    Article  CAS  Google Scholar 

  73. Hussain AB, Khalid IA, Lazim HG (2016) Effect of nano particle sizes on the third-order optical non linearities and nanostructure of copolymer P3HT: PCBM thin film for organic photovoltaics. Mater Res Bull 76:422–430. https://doi.org/10.1016/j.materresbull.2016.01.005

    Article  CAS  Google Scholar 

  74. Alfahed RKF, Al-Asadi AS, Al-Mudhaffer MF, Hussain AB (2021) Synthesis, morphological and optical characterizations of the poly (O-toluidine)- LiCl networks thin film. Opt Laser Technol 133:106524. https://doi.org/10.1016/j.optlastec.2020.106524

    Article  CAS  Google Scholar 

  75. Villafranca AB, Saravanamuttu K (2009) Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium. J Opt A: Pure Appl Opt 11:125202. https://doi.org/10.1088/1464-4258/11/12/125202

    Article  CAS  Google Scholar 

  76. Obeed MT, Abul-Hail RC, Badran HA (2020) Gamma irradiation effect on the nonlinear refractive index and optical limiting behavior of pyronine Y dye solution. J Basrah Res (Sci) 46:49–56

    Google Scholar 

  77. Jayamohan L, Nair VS (2022) Nonlinear optical properties of polyaniline doped with cardanol based dye. J Phys: Conf Ser 2357:012012. https://doi.org/10.1088/1742-6596/2357/1/012012

    Article  Google Scholar 

  78. Osaheni JA, Jenekhe SA (1992) Nonlinear optical properties of polyanilines and derivatives. J Phys Chem 96:2830

    Article  CAS  Google Scholar 

  79. Pramodini S, Poornesh P (2015) Nonlinear optical measurements of conducting copolymers of aniline under CW laser excitation. Opt Mater 46:186–194. https://doi.org/10.1016/j.optmat.2015.04.017

    Article  CAS  Google Scholar 

  80. Humud HR, Abdullah MM, Khudhair DM (2015) Nonlinear optical properties of polyaniline iodine doped thin films prepared by aerosol assisted plasma jet polymerization at atmospheric pressure. Int J Curr Eng Technol 5:3305–3309

    Google Scholar 

  81. Pramodini S, Poornesh P, Sudhakar YN, Selva Kumar M (2013) and optical power limiting measurements of Polyaniline and its derivative Poly(o-toluidine) under cw regime. Opt Commun 293:125–132. https://doi.org/10.1016/j.optcom.2012.11.088

    Article  CAS  Google Scholar 

  82. Zhang YD, Ma L, Yang CB, Yuan P (2009) Third-order nonlinear optical properties and its limiting behavior of polyaniline/SiO2 composite materials. J Phys: Conf Ser 188:012030. https://doi.org/10.1088/1742-6596/188/1/012030

    Article  CAS  Google Scholar 

  83. Maciel GS, Bezerra AG, Rakov N, de Araújo CB, Anderson SLG (2001) Third- order nonlinear optical properties of undoped polyaniline solutions and films probed at 532 nm. J Opt Soc Am B 18:1099–1103

    Article  CAS  Google Scholar 

  84. Nagaraja KK, Pramodini S, Poornesh P, Telenkov MP, Kityk IV (2017) Nonlinear optical properties of polyaniline and poly (o-toluidine) composite thin films with multi walled carbon nano tubes. Phys B 512:45–53. https://doi.org/10.1016/j.physb.2017.02.022

    Article  CAS  Google Scholar 

  85. Samoc M, Samoc A, Davies BL, Swiatkiewicz J, Jin CQ, White JW (1995) Real and imaginary components of the third-order nonlinearity of polyaniline dodecylbenzenesulfonic salt. Opt Lett 20:2478–2480

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

The present submissions represent original work. The current work is not considered for publication elsewhere in any other form. Also, all of the co-authors aware of this submission and they contributed to this work. Fadhil A. Tuma: Analyzed the results, wrote the original draft and Participated in the study of the Poly-ANI structure. Alyaa A. Jari: Interpreted the data, revised the manuscript and Data curation. Harith A. Hasan: Data analysis and revised manuscript. Hussain Ali Badran: designed the study and conducted most of the experiments.

Corresponding author

Correspondence to Hussain A. Badran.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Publication

We thus affirm that this work is completely original, that it has never been published, and that it is not being considered for publication anywhere else at this time. We can confirm that the work has been reviewed and accepted by each of the indicated authors, and that there are no additional people who meet the requirements for authorship but are not included in the credit section of the paper. In addition, we like to reaffirm that the sequence of authors that is shown in the text has been accepted by each and every one of us.

Consent to Participate

Informed consent was obtained from all authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuma, F.A., Jari, A.A., Hasan, H.A. et al. Synthesis, Surface Morphology, Gas Sensor, DSC Technique and Third-Order Behavior of Conducting Polymer. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03448-0

Keywords

Navigation