Skip to main content
Log in

Study of thermal lens technique and third-order nonlinear susceptibility of PMMA base containing 5′, 5′′-dibromo-o-cresolsulfophthalein

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Measurements of the third-order nonlinear susceptibility of 5′, 5′′-dibromo-o-cresolsulfophthalein (BCP) in a chloroform solvent were studied using a cw diode laser at 532 nm as the source of excitation, both in solution and as a poly methyl methacrylate solid film, respectively. The optical response was characterized by measuring the intensity-dependent refractive index (n 2) of the medium using the Z-scan technique. The sample showed negative and large nonlinear refractive index values of the order of 10−7 cm2/W and reverse saturable absorption with high values of the nonlinear absorption coefficient of the order of 10−4 cm/W. The nonlinear refractive index was found to vary with the concentration. The optical constants of the film were studied and the dispersion of the refractive index was discussed in terms of the Wemple–DiDomenico single oscillator model. Thermal lens technique was applied to investigate the thermo-optical properties (dn/dT) and the thermal diffusivity (D). In this technique a pump beam was aligned collinearly. A localized change in the refractive index of the sample due to the thermal heating produced a thermal lens that was then detected by the study of the focusing and defocusing of the pump beam. Morphological of a one-dimensional microscopic image surface profile scan and histogram curve of the film surface has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Kaino, S. Tomaru, Adv. Mate 5, 172 (1993)

    Article  Google Scholar 

  2. P. Rochon, J. Gosselin, A. Natansohn, S. Xie, Appl. Phys. Lett. 60, 4 (1992)

    Article  Google Scholar 

  3. T. Todorov, L. Nikolova, N. Tomova, Appl. Opt. 23, 4309 (1984)

    Article  Google Scholar 

  4. V.P. Pham, G. Manivannan, R.A. Lessard, G. Bornengo, R. Po´, Appl. Phys. 60, 239 (1995)

    Article  Google Scholar 

  5. Q.S. Wen, Y.X. Qin, C. Kuan, Z.C. Ping, Z.L. Shun, W.X. Yu et al., Acta Physica Sinica 54, 3189 (2005)

    Google Scholar 

  6. T. Xua, G. Chenb, C. Zhangc, Z. Haoc, X. Xub, Q. Tian, Opt. Mate 30, 1349 (2008)

    Article  Google Scholar 

  7. J.W. Kang, E. Kim, Opt. Mate 21, 543 (2002)

    Article  Google Scholar 

  8. D.B. Luo, W.L. She, S.Z. Wu, F. Zeng, T. Tang, S.L. Yao, Chin. Opt. Lett. 1, 243 (2003)

    Google Scholar 

  9. T. Okamoto, T. Kamiyama, I. Yamaguchi, Opt. Lett. 18, 1570 (1993)

    Article  Google Scholar 

  10. A. Yacoubian, T.M. Aye, Appl. Opt. 32, 3073 (1993)

    Article  Google Scholar 

  11. H.A. Badran, Results Phys. 4, 69 (2014)

    Article  Google Scholar 

  12. K.A. AL-Adel, H.A. Badran, Eur. J. Appl. Eng. Sci. Res. 1, 66 (2012)

    Google Scholar 

  13. V. Weiss, A.A. Friesem, V.A. Krongauz, Opt. Lett. 1089 (1993)

  14. H.A. Badran, J. Appl. Phys. (IOSRJAP) 1, 33 (2012)

    Google Scholar 

  15. K.A. AL-Adel, H.A. Badran, Arch. Appl. Sci. Res. 4, 2499 (2012)

    Google Scholar 

  16. P. Wang, H. Ming, J.Y. Zhang, Z.C. Liang, Y.H. Lu, Q.J. Zhang, J.P. Xie, Y.P. Tian, Opt Commun. 203, 159 (2002)

    Article  Google Scholar 

  17. J. Zyss, Chem. Phys. 71, 909 (1979)

    Google Scholar 

  18. Z.Z. Chao, Y.W. Chuang, I. Chan, Y.L. Guo, S.W. Chang, Phys. Chem. B 114, 42 (2010)

    Article  Google Scholar 

  19. A.Y. AL-Ahmad, M.F. AL-Mudhaffer, H.A. Badran, C.A. Emshary, Opt. Laser Technol. 54, 72 (2013)

    Article  Google Scholar 

  20. H.C. Dong, M.K. Hyun, W.M.K.P. Wijekoon, P.N. Prasad, Chem. Mate 4, 1253 (1992)

    Article  Google Scholar 

  21. C.A..Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg et al., Macromolecules 26, 3720 (1993)

    Article  Google Scholar 

  22. P.C. Ray, P.K. Das, Phys. Chem. 99, 14414 (1995)

    Article  Google Scholar 

  23. A.A.M. Farag, A. Ashery, M.A. Shenashen, Physica B 407, 2404 (2012)

    Article  Google Scholar 

  24. N. Haijun, W. Wen, H. Yudong, Z. Yundong, Z. Yunjun, B. Xuduo, L. Yuan, Sci China Ser. B-Chem. 50, 230 (2007)

    Article  Google Scholar 

  25. H.G. Lazim, K.I. Ajeel, H.A. Badran, Spectrochim. Acta Part A 145, 598 (2015)

    Article  Google Scholar 

  26. A.P. Singh, S. Kumari, R. Shrivastav, Int. J. Hydrog. Energy 33, 5363 (2008)

    Article  Google Scholar 

  27. H.A. Badran, M.F. Al-Mudhaffer, Q.M. Ali, A.Y. Al-Ahmad, Chalcogenide Lett. 9, 483 (2012)

    Google Scholar 

  28. H.S. Shaaker, W.A. Hussain, H.A. Badran, Adv. Appl. Sci. Res. 3, 2940 (2012)

    Google Scholar 

  29. H.A. Badran, A.Y. Taha, A.F. Abdulkader, C.A. Emshary, J. Ovonic Res. 8, 161 (2012)

    Google Scholar 

  30. H.A. Badran, Am. J. Appl. Sci. 9, 250 (2012)

    Article  Google Scholar 

  31. A.Y. Al-Ahmad, Opt. Spectrosc. 113, 197 (2012)

    Article  Google Scholar 

  32. E. Abd El-Wahabb, M.M. El-Samanoudy, M. Fadel, Appl. Surf. Sci. 174, 106 (2001)

    Article  Google Scholar 

  33. N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials. (Calendron Press, New York, 1979)

    Google Scholar 

  34. H.A. Badran, Appl. Phys. B 119, 319 (2015)

    Article  Google Scholar 

  35. H.A. Badran, H.F. Hussain, K.I. Ajeel, Optik 127, 5301 (2016)

    Article  Google Scholar 

  36. C.A. Emshary, H.A. Badran, A.Y. AL-Ahmad, Q.M. Ali, J. Mater. Environ. Sci. 4, 319 (2013)

    Google Scholar 

  37. Q.M. Ali, A.Y. Al-Ahmad, M.F. Al-Mudhaffer, H.A. Badran, Rom. J. Phys. 58, 962 (2013)

    Google Scholar 

  38. H.A. Badran, H.A. Sultan, Q.M. Ali, J. Mater. Sci. Mater. Electron. 27, 6735 (2016)

    Article  Google Scholar 

  39. H.A. Badran, A.Y. Al-Ahmad, Q.M. Ali, C.A. Emshary, Pramana j. Phys. 86, 135 (2016)

    Article  Google Scholar 

  40. H.A. Badran, Adv. Phys. Theor. Appl. 26, 36 (2013)

    Google Scholar 

  41. H.A. Badran, A.Y. AL-Ahmad, M.F. AL-Mudhaffer, C.A. Emshary, Opt. Quant. Electron. 47, 1859 (2015)

    Article  Google Scholar 

  42. H.A. Badran, K.I. Ajeel, H. Gazy, Lazim. Mater. Res. Bull. 76, 422 (2016)

    Article  Google Scholar 

  43. N.A.H.S. Yakop, H.A. Badran, Int. J. of Eng. Res. Appl. 4, 727 (2014)

    Google Scholar 

  44. H.A. Badran, A. Imran, Q.M. Ali, Optik 127, 2659 (2016)

    Article  Google Scholar 

  45. H.A. Badran, R.C. Abul-Hail, H.S. Shaker, A. I. Musa, Q.M. Ali, Appl. Phys. B 123, 31 (2017)

    Article  Google Scholar 

  46. H.A. Badran, K.A. Aladil, H.G. Lazim, A.Y. Al-Ahmad, J Mater Sci. 27, 2212 (2016)

    Google Scholar 

  47. V. Pilla, E.F. Chillcce, A.A.R. Neves, E. Munin, T. Catunda, C.L. Cesar et al., J. Mater. Sci. 42, 2304 (2007)

    Article  Google Scholar 

  48. Q.M. Ali, H.A. Badran, A.Y. AL-Ahmad, C.A. Emshary, Chin. Phys. B 22, 114209 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussain Ali Badran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badran, H.A., Al-Fregi, A.A., Alfahed, R.K.F. et al. Study of thermal lens technique and third-order nonlinear susceptibility of PMMA base containing 5′, 5′′-dibromo-o-cresolsulfophthalein. J Mater Sci: Mater Electron 28, 17288–17296 (2017). https://doi.org/10.1007/s10854-017-7661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7661-4

Navigation