Skip to main content
Log in

CuS NPs/Zeolite A/ZIF-8 Dual-Action Composite for Removal of Methylene Blue from Aqueous Solutions

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Different composites consisting of Zeolite A, ZIF-8, and CuS NPs were prepared by a solvothermal method and their potential was studied for removal of methylene blue (MB) from aqueous solutions. All of the synthesized composites were characterized by Fourier-transform infrared spectroscopy, powder X-Ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-Ray analysis, and diffuse reflectance spectroscopy. In order to optimize the experimental conditions, effect of many parameters including contact time, pH of solution, temperature, adsorbent dosage, and initial dye concentration was studied. It was found that CuS NPs/Zeolite A/ZIF-8 composite had a higher MB adsorption capacity than other adsorbents including Zeolite A/ZIF-8 and CuS NPs/ZIF-8. Under the optimized conditions, 75% dye removal efficiency was observed for the CuS NPs/Zeolite A/ZIF-8 composite. Kinetics and thermodynamics of the corresponding adsorption processes was also studied. The Langmuir isotherm model showed a better agreement with the obtained results and the adsorption process of MB fitted the pseudo-second-order kinetic model. Thermodynamic parameters, on the other hand, demonstrated that the adsorption process was exothermic. More interestingly, in presence of an affordable oxidant such as hydrogen peroxide, the MB removal efficiency was raised to 87%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Linde type A.

References

  1. A. Chakraborty, D. A. Islam, and H. Acharya (2019). J. Solid State Chem. 269, 566–574. https://doi.org/10.1016/j.jssc.2018.10.036.

    Article  CAS  Google Scholar 

  2. J. Fito, S. Abrham, and K. Angassa (2020). Int. J. Environ. Res. Public Health. 14, 501–511. https://doi.org/10.1007/s41742-020-00273-2.

    Article  CAS  Google Scholar 

  3. A. Chakraborty and H. Acharya (2018). Colloid Interface Sci. Commun. 24, 35–39. https://doi.org/10.1016/j.colcom.2018.03.005.

    Article  CAS  Google Scholar 

  4. S. K. Kansal and A. Kumari (2014). Chem. Rev. 114, 4993–5010. https://doi.org/10.1021/cr400093w.

    Article  CAS  PubMed  Google Scholar 

  5. T. Robinson, B. Chandran, and P. Nigam (2002). Water Res. 36, 2824–2830. https://doi.org/10.1016/S0043-1354(01)00521-8.

    Article  CAS  PubMed  Google Scholar 

  6. J. L. C. Rowsell and O. M. Yaghi (2004). Microporous Mesoporous Mater. 73, 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034.

    Article  CAS  Google Scholar 

  7. J. Wang, Y. Wang, Y. Liang, J. Zhou, L. Liu, S. Huang, and J. Cai (2021). Microporous Mesoporous Mater. 310. https://doi.org/10.1016/j.micromeso.2020.110662.

    Article  CAS  Google Scholar 

  8. K. S. Park, Z. Ni, A. P. Coˆte´, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, and O. M. Yaghi (2006). PNAS Org. Chem. 103, 10186–10191. https://doi.org/10.1073/pnas.0602439103.

    Article  CAS  Google Scholar 

  9. H. P. Jing, C. C. Wang, Y. W. Zhang, P. Wang, and R. Li (2014). RSC Adv. 4, 54454–54462. https://doi.org/10.1039/C4RA08820D.

    Article  CAS  Google Scholar 

  10. U. P. N. Tran, K. K. A. Le, and N. T. S. Phan (2011). ACS. Catal. 1, 120–127. https://doi.org/10.1021/cs1000625.

    Article  CAS  Google Scholar 

  11. V. A. Tran, K. B. Vu, T. T. T. Vo, V. T. Le, H. H. Do, L. G. Bach, and S. W. Lee (2021). Appl. Surf. Sci. 538. https://doi.org/10.1016/j.apsusc.2020.148065.

    Article  CAS  Google Scholar 

  12. M. Gougazeh and J.-Ch. Buhl (2014). J. Assoc. Arab Univ. Basic Appl. Sci. 15, 35–42. https://doi.org/10.1016/j.jaubas.2013.03.007.

    Article  Google Scholar 

  13. M. Foroughi, A. Salem, and S. Salem (2021). Mater. Chem. Phys. 258. https://doi.org/10.1016/j.matchemphys.2020.123892.

    Article  CAS  Google Scholar 

  14. Y. Wang, F. Jiang, J. Chen, X. Sun, T. Xian, and H. Yang (2020). Nanomater. 10, 178. https://doi.org/10.3390/nano10010178.

    Article  CAS  Google Scholar 

  15. L. Chen, W. Yu, and Y. Li (2009). Powder Technol. 191, 52–54. https://doi.org/10.1016/j.powtec.2008.09.007.

    Article  CAS  Google Scholar 

  16. Y. Chen, C. Davoisne, J. M. Tarascon, and C. Gue´ry (2012). J. Mater. Chem. 22, 5295–5299. https://doi.org/10.1039/C2JM16692E.

    Article  CAS  Google Scholar 

  17. S. Ramadan, L. Guo, Y. Li, B. Yan, and W. Lu (2012). Small. 8, 3143–3150. https://doi.org/10.1002/smll.201200783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Kundu, D. Pradhan, and A. C. S. Appl (2014). Mater. Interfaces. 6, 1823–1834. https://doi.org/10.1021/am404829g.

    Article  CAS  Google Scholar 

  19. S. Zhou, L. Gong, X. Zhao, Q. Liang, W. Zhang, L. Wang, K. Yu, and B. Zhou (2020). Chem. Phys. Lett. 759. https://doi.org/10.1016/j.cplett.2020.138034.

    Article  CAS  Google Scholar 

  20. S. Iqbal, A. Bahadur, S. Anwer, M. Shoaib, G. Liu, H. Li, M. Raheel, M. Javed, and B. Khalid (2020). CrystEngComm 22, 4162–4173. https://doi.org/10.1039/D0CE00421A.

    Article  CAS  Google Scholar 

  21. M. Kamranifar, A. Allahresani, and A. Naghizadeh (2019). J. Hazard. Mater. 366, 545–555. https://doi.org/10.1016/j.jhazmat.2018.12.046.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Liu, M. Li, Q. Zhang, P. Qin, X. Wang, G. He, and L. Li (2020). J. Chem. Technol. Biotechnol. 95, 665–674. https://doi.org/10.1002/jctb.6247.

    Article  CAS  Google Scholar 

  23. M. Saranya, C. Santhosh, R. Ramachandran, P. Kollu, P. Saravanan, M. Vinoba, S. K. Jeong, and A. N. Grace (2014). Powder Technol. 252, 25–32. https://doi.org/10.1016/j.powtec.2013.10.031.

    Article  CAS  Google Scholar 

  24. X. Liu, J. Luo, Y. Zhu, Y. Yang, and S. Yang (2015). J. Alloy. Compd. 648, 986–993. https://doi.org/10.1016/j.jallcom.2015.07.065.

    Article  CAS  Google Scholar 

  25. R. Dod, G. Banerjee, and S. Saini (2012). Biotechnol Bioprocess Eng. 17, 862–874. https://doi.org/10.1007/s12257-011-0614-5.

    Article  CAS  Google Scholar 

  26. S. Sohrabnezhad and A. Pourahmad (2010). Desalination 256, 84–89. https://doi.org/10.1016/j.desal.2010.02.009.

    Article  CAS  Google Scholar 

  27. L.-Ch. Juang, Ch.-C. Wang, and Ch.-K. Lee (2006). Chemosphere. 64, 1920–1928. https://doi.org/10.1016/j.chemosphere.2006.01.024.

    Article  CAS  PubMed  Google Scholar 

  28. M. H. Moghaddam, R. Nabizadeh, M. H. Dehghani, B. Akbarpour, A. Azari, and M. Yousefi (2019). Microchem. J. 150. https://doi.org/10.1016/j.microc.2019.104185.

    Article  CAS  Google Scholar 

  29. I. A. W. Tan, B. H. Hameed, and A. L. Ahmad (2007). Chem. Eng. J. 127, 111–119. https://doi.org/10.1016/j.cej.2006.09.010.

    Article  CAS  Google Scholar 

  30. S. Wang, H. Li, and L. Xu (2006). J. Colloid Interface Sci. 29, 71–78. https://doi.org/10.1016/j.jcis.2005.08.006.

    Article  CAS  Google Scholar 

  31. Z. Heidarinejad, O. Rahmanian, M. Fazlzadeh, and M. Heidari (2018). J. Mol. Liq. 264, 591–599. https://doi.org/10.1016/j.molliq.2018.05.100.

    Article  CAS  Google Scholar 

  32. G. McKay, M. El Guendi, and M. M. Nassar (1987). Wat. Res. 21 (12), 1513–1520. https://doi.org/10.1016/0043-1354(87)90135-7.

    Article  CAS  Google Scholar 

  33. Y. Li, K. Zhou, M. He, and J. Yao (2016). Microporous Mesoporous Mater. 234, 287–292. https://doi.org/10.1016/j.micromeso.2016.07.039.

    Article  CAS  Google Scholar 

  34. K. Y. Foo and B. H. Hameed (2010). Chem. Eng. J. 156, 2–10. https://doi.org/10.1016/j.cej.2009.09.013.

    Article  CAS  Google Scholar 

  35. M. Khajaviana, E. Salehi, and V. Vatanpour (2020). Sep. Purif. Technol. 241. https://doi.org/10.1016/j.seppur.2020.116759.

    Article  CAS  Google Scholar 

  36. A. Mittal, R. Ahmad, and I. Hasan (2016). Desalin. Water. Treat. 57, 17790–17807. https://doi.org/10.1080/19443994.2015.1086900.

    Article  CAS  Google Scholar 

  37. M. Monier, D. M. Ayad, Y. Wei, and A. A. Sarhan (2010). J. Hazard. Mater. 177, 962–970. https://doi.org/10.1016/j.jhazmat.2010.01.012.

    Article  CAS  PubMed  Google Scholar 

  38. S. Mazloomi, M. Yousefi, H. Nourmoradi, and M. Shams (2019). Health Sci. Eng. 17, 209–218. https://doi.org/10.1007/s40201-019-00341-6.

    Article  CAS  Google Scholar 

  39. I. Mantasha, H. A. M. Saleh, K. M. A. Qasem, M. Shahid, M. Mehtab, and M. Ahmad (2020). Inorg. Chim. Acta. 511. https://doi.org/10.1016/j.ica.2020.119787.

    Article  CAS  Google Scholar 

  40. Y. Chang, J. Y. Lai, and D. J. Lee (2016). Bioresour. Technol. 222, 513–516. https://doi.org/10.1016/j.biortech.2016.09.125.

    Article  CAS  PubMed  Google Scholar 

  41. D. A. Fungaro, L. C. Grosche, A. S. Pinheiro, J. C. Izidoro, and S. I. Borrely (2010). Electron. J. Chem. 2 (3), 235–247.

    CAS  Google Scholar 

  42. K. Y. Hor, J. MCh. Chee, M. N. Chong, B. Jin, C. Saint, P. E. Poh, and R. Aryal (2016). J. Clean. Product. 118, 197–209. https://doi.org/10.1016/j.jclepro.2016.01.056.

    Article  CAS  Google Scholar 

  43. R. Chandra and M. Nath (2017). Chem. Select 2, 7711–7722. https://doi.org/10.1002/slct.201701195.

    Article  CAS  Google Scholar 

  44. F. T. Johra, W. G. Jung, and J. Serb (2018). Chem. Soc. 82 (4), 503–513. https://doi.org/10.2298/JSC170810117T.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Khorshidi or Hadi Fallah Moafi.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaabanzadeh, Z., Khorshidi, A., Moafi, H.F. et al. CuS NPs/Zeolite A/ZIF-8 Dual-Action Composite for Removal of Methylene Blue from Aqueous Solutions. J Clust Sci 34, 487–499 (2023). https://doi.org/10.1007/s10876-022-02241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02241-6

Keywords

Navigation