Skip to main content
Log in

Adsorption of methylene blue using green pea peels (Pisum sativum): A cost-effective option for dye-based wastewater treatment

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Methylene blue (MB), a common toxic dye, is largely discharged from dyeing processes for acrylic, nylon, silk, and woolen fabrics in textile industries. While application of conventional removal processes like chemical precipitation, ion exchange, commercial activated carbon adsorption, etc often become cost-prohibitive, the adsorption of MB by abundantly available green pea peel (GPP: Pisum sativum) derived and acid-treated carbon (GPP-AC) has proved to be a cost-attractive option in the present study. The physicochemical and morphological characteristics of GPP-AC were examined with the help of XRD, BET surface area, SEM, and Fourier transform infrared spectrophotometry ((FT-IR) analysis. The influences of such adsorption parameters as initial dye concentration, pH, contact time, adsorbent dosage, agitation speed, particle size, and temperature were evaluated and optimized. The equilibrium contact time for maximum adsorption of MB on to GPPAC was found to be 7 h. The equilibrium data of the adsorption process were modeled by using the Langmuir, Freundlich, Temkin, and Dubinin-Raduskevich (D-R) isotherms. However, the adsorption equilibrium data were best described by the Langmuir Isotherm model, with a maximum adsorption capacity of 163.94 mg MB/g GPPAC at 30°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sudipta, C., S. Dae, B. Lee, W. Min, C. Lee, and H. W. Seung (2009) Congo red adsorption from aqueous solutions by using chitosan hydrogel beads impregnated with nonionic or anionic surfactant. Bioresour. Technol. 100: 3862–3868.

    Article  Google Scholar 

  2. Ghosh, D. and G. Bhattacharyya (2002) Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 20: 295–300.

    Article  CAS  Google Scholar 

  3. Ponnusami, V., R. Aravindhan, N. Karthik raj, G. Ramadoss, and S. N. Srivastava (2009) Adsorption of methylene blue onto gulmohar plant leaf powder: Equilibrium, kinetic and thermodynamic analysis. J. Environ. Protection Sc. 3: 1–10.

    Google Scholar 

  4. Fabio, M. and S. Luciano (2009) Reuse of coal combustion ashes as dyes and heavy metal adsorbents: Effect of sieving and demineralizationon waste properties and adsorption capacity. Chem. Eng. J. 150: 174–180.

    Article  Google Scholar 

  5. Flavio, P. A., E. C. Lima, S. L. P. Dias, and A. C. Mazzoca (2008) Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. Haz. Mat. 150: 703–712.

    Article  Google Scholar 

  6. Ayes, Z., J. Aroguz, R. H. Gulen, and Evers (2008) Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment. Bioresour. Technol. 99: 1503–1508.

    Article  Google Scholar 

  7. Amina, A. A, S. B. Girgis, and A. N. Fathy (2008) Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: Batch and column studies. Dyes and Pigments 76: 282–289.

    Article  Google Scholar 

  8. Hameed, B. H., D. K. Mahmoud, and A. L. Ahmad (2008) Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Haz. Mat. 158: 65–72.

    Article  CAS  Google Scholar 

  9. Al-Anber, Z., Z. Al-Qodah, M. Al-Shannag, A. Harahsheh, and W. K. Lafi (2007) Adsorption of methylene blue by acid and heat treated diatomaceous silica. Desalination 217: 212–224.

    Article  Google Scholar 

  10. Ferdi Gercel, H., O. Gercel, A. Ozcan, and A. Safa Ozcan (2007) Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Appl. Surface Sci. 253: 4843–4852.

    Article  Google Scholar 

  11. Wang, S. and Z. H. Zhu (2005) Sonochemical Treatment of fly ash for dye removal from wastewater. J. Haz. Mat. 126: 91–95.

    Article  CAS  Google Scholar 

  12. Banerjee, S. and M. G. Dastidar (2005) Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics. Bioresour. Technol. 96: 1919–1928.

    Article  CAS  Google Scholar 

  13. Mizuho, H., K. Naohito, N. Takeo, M. Kazuoki, K. Mineaki, T. Takamichi, and T. Seiki (2002) J. Colloid Interface Sci. 254: 17–22.

    Article  Google Scholar 

  14. Ahmad, A. L., B. H. Hameed, and D. K. Mahmoud (2008) Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste. Haz. Mat. 158: 499–506.

    Article  Google Scholar 

  15. Singh, C. K., J. N. Sahu, K. K. Mahalik, C. R. Mohanty, B. Raj Mohan, and B. C. Meikap (2007) Studies on the removal of Pb (II) from wastewater by activated carbon developed from Tamarind wood activatd with sulphuric acid. J. Haz. Mat. 153: 221–228.

    Article  Google Scholar 

  16. Borba, C. E., R. Guirardello, E. A. Silva, C. R. G. Tavares, and M. T. Veit (2006) Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: Experimenttal and theoretical breakthrough curves. Biochem. Eng. J. 30: 184–191.

    Article  CAS  Google Scholar 

  17. Lin, C., K. Lin, H. Hsu, T. Su, and W. Tsai (2008) Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste. J. Haz. Mat. 154: 73–78.

    Article  Google Scholar 

  18. Kavak, D. and N. Ozturk (2005) Adsorption of boron form aqueous solutions using fly ash: Batch and column studies. J. Haz. Mat. 127: 81–88.

    Article  Google Scholar 

  19. Bulent, A., O. Orhan, T. Mustafa, and S. C. Mehmet (2003) Adsorption of negatively charged azo dyes onto surfactant-modified sepiolite. J. Envir. Eng.. (ASCE) 129: 709–715.

    Article  Google Scholar 

  20. Batzias, F. A. and D. K. Sidiras (2007) Simulation of methylene blue adsorption by salts-treated beech sawdust in batch and fixed-bed systems. J. Haz. Mat. 149: 8–17.

    Article  CAS  Google Scholar 

  21. Gagnon, G. A. and M. M. Mortula (2007) Alum residuals as a low technology for phosphorus removal from aquaculture processing water. Aquacult. Eng. 36: 233–238.

    Article  Google Scholar 

  22. Biswas, M. N., D. Das, and K. Mohanty (2005) Adsorption of phenol form aqueous solution using activated carbons prepared form Tectona grandis sawdust by ZnCl2 activation. Chem. Eng. J. 115: 121–131.

    Article  Google Scholar 

  23. Espantaleon, A. G., J. A. Nieto, M. Fernandez, and A. Marsal (2003) Use of activated clays in the removal of dyes and surfactants from tannery waste waters. Appl. Clay Sci. 24: 105–110.

    Article  CAS  Google Scholar 

  24. Kavitha, D. and C. Namasivayam (2003) Adsorptive removal of 2-chlorophenol by low-cost 579 coir pith carbon. J. Haz. Mat. 98: 257–274.

    Article  Google Scholar 

  25. Badruzzaman, M., R. Detlef, U. Knappe, and P. Westerhoff (2004) Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Res. 38: 4002–4012.

    Article  CAS  Google Scholar 

  26. Malik, P. K. (2003) Use of activated carbons prepared form sawdust and rice-husk for adsorption of acid dyes: A case study of Acid Yellow 36. Dyes and Pigments 56: 239–249.

    Article  CAS  Google Scholar 

  27. Snell, F. D. and F. M. Biffen (1944) Commercial methods of analysis. McGraw-Hill, NY.

    Google Scholar 

  28. Kumar, K. V. and K. Porkodi (2007) Mass transfer: Kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum natatum. J.f Haz. Mat. 146: 214–226.

    Article  CAS  Google Scholar 

  29. Aydin, H. and Y. Bulut (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194: 259–267.

    Article  Google Scholar 

  30. Kumar, K. V. and A. Kumaran (2005) Removal of methylene blue by mango seed kernel powder. Biochem. Eng. J. 27: 83–93.

    Article  CAS  Google Scholar 

  31. Yasemin, B. and A. Haluk (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194: 259–267.

    Article  Google Scholar 

  32. Tamez, U., I. Akhtarul, M. Shaheen, and Rukanuzzaman (2009) Adsorptive removal of methylene blue by tea waste. J. Haz. Mat. 164: 53–60.

    Article  Google Scholar 

  33. Ho, Y. S. and A. E. Ofomaja (2006) Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J. Haz. Mat. 129: 137–142.

    Article  CAS  Google Scholar 

  34. Ponnusami, V., S. N. Srivastava, and S. Vikram (2008) Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions J. Haz. Mat. 152: 276–286.

    Article  CAS  Google Scholar 

  35. Mehmet, D., A. Harun, and A. Mahir (2009) Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. J. Haz. Mat. 164: 172–181.

    Article  Google Scholar 

  36. Weber, W. J. (1972) Physicochemical Process for water Quality Control. Wlley-Interscience, NY.

    Google Scholar 

  37. Asfour, H. M., M. S. El-Geundi, O. A. Fadali, and M. M. Nassar (1985) Equilibrium studies on adsorption of basic dyes on hardwood. J. Chem. Technol. Biotech. 35: 21–27.

    Google Scholar 

  38. Bouberka, Z., Z. Derriche, S. Elmaleh, S. Kacha, and M. Kameche (2005) Sorption study of an acid dye from an aqueous solution using modified clays. J. Haz. Mat. 119: 117–124.

    Article  CAS  Google Scholar 

  39. Alkan, M., M. Dogan, and Y. Onganer (2000) Adsorption of methylene bule from aqueous solution onto perlite. Water Air Soil Pollut. 120: 229–249.

    Article  Google Scholar 

  40. Porkodi, K., C. V. Subbhruaam, S. Senthikummar, and P. R. Varadarajan (2005) Adsorption of Methylene blue onto Jute fiber carbons: Kinetics and equilibrium studies. J. Colloid Interface Sci. 284: 78–82.

    Article  Google Scholar 

  41. Han, R., H. Liu, J. Shi, Y. Wang, W. Yu, and W. Zou (2007) Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column. J. Haz. Mat. 141: 713–718.

    Article  CAS  Google Scholar 

  42. Aydin, H. and Y. Bulut (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194: 259–267.

    Article  Google Scholar 

  43. Crini, G., F. Gimbert, H. N. Peindy, and C. Robert (2007) Removal of C. I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Seperation and Purif. Technol. 53: 97–110.

    Article  CAS  Google Scholar 

  44. Tempkin, M. J. and V. Pyzhev (1940) Recent modifications to Langmuir isotherms. Acta Physiochim. URSS. 12: 217–222.

    Google Scholar 

  45. Kavitha, D. and C. Namasivayam (2007) Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 98: 14–21.

    Article  CAS  Google Scholar 

  46. Dubinin, M. M. and L. V. Radushkevich (1947) Equation of the characteristic curve of activated charcoal. Chem. Zentr. 1: 875–889.

    Google Scholar 

  47. Garg, V., K. Kardirvelu, and J. Monika (2009) Chromium (vi) removal from aqueous solution using sunflower stem waste. J. Haz. Mat. 162: 365–372.

    Article  Google Scholar 

  48. Chang, C. Y., S. F. Chiien, H. F. Hsieh, M. C. Lin, and W.T. Tsai (2001) Adsorption of acid dye onto activated carbons prepared from agricultural waste bagases by AnCl2 activation. Chemosphere 45: 51–58.

    Article  Google Scholar 

  49. Malik, R., D. S. Ramteke, and S. R. Wate (2007) Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management 27: 1129–1138.

    Article  CAS  Google Scholar 

  50. Kavitha, D. and C. Namasivayam (2002) Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments 54: 47–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dod, R., Banerjee, G. & Saini, S. Adsorption of methylene blue using green pea peels (Pisum sativum): A cost-effective option for dye-based wastewater treatment. Biotechnol Bioproc E 17, 862–874 (2012). https://doi.org/10.1007/s12257-011-0614-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0614-5

Keywords

Navigation