Skip to main content
Log in

The Role of Green Reducing Agents in Gelatin-Based Synthesis of Colloidal Selenium Nanoparticles and Investigation of Their Antimycobacterial and Photocatalytic Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Herein, we have presented a new approach for the fabrication of selenium nanoparticles (Se-NPs), which involves the utilization of sodium selenite (Na2SeO3) as the selenium source and gelatin in the role a capping agent. Glucose and ascorbic acid have been applied and compared as the “green” reducing agents. Se-NPs have been characterized by the means of X-ray diffraction (XRD), UV–Vis spectrometry, dynamic light scattering, transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, and atomic force microscopy. The existence of spherical Se-NPs with mean particle size of < 20 nm as an aqueous stable colloid solution has been revealed by the obtained results. The XRD patterns have shown the hexagonal crystalline structures. Se-NPs have been capable of preventing some infections. The aim of this paper was to investigate two important properties of Se-NPs, including antimycobacterial and photocatalytic activities. The antimycobacterial investigations on Mycobacterium tuberculosis have exhibited the fine functionality of Se-NPs in the role of an antimycobacterial drug. Also, about 60% of Methylene Blue and 75% of Rhodamine B has been detected to degrade in the presence of Se-NPs under UV light after 150 and 120 min, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I. Maliszewska, A. Juraszek, and K. Bielska (2014). J. Clust. Sci. 25, 989.

    Article  CAS  Google Scholar 

  2. F. Charbgoo, M. Ramezani, and M. Darroudi (2017). Biosens. Bioelectron. 96, 33.

    Article  CAS  PubMed  Google Scholar 

  3. M. Składanowski, M. Wypij, D. Laskowski, P. Golińska, H. Dahm, and M. Rai (2017). J. Clust. Sci. 27, 59.

    Article  CAS  Google Scholar 

  4. H. El-Ramady, N. Abdalla, H. S. Taha, T. Alshaal, A. El-Henawy, E.-D. F. Salah, M. S. Shams, S. M. Youssef, T. Shalaby, and Y. Bayoumi (2016). Environ. Chem. Lett. 14, 123.

    Article  CAS  Google Scholar 

  5. A. Boostani, A. Asghar Sadeghi, S. Naser Mousavi, M. Chamani, and N. Kashan (2015), Acta Scientiae Veterinariae 43.

  6. P. Mohapatra, R. Swain, S. Mishra, T. Behera, P. Swain, S. Mishra, N. Behura, S. Sabat, K. Sethy, and K. Dhama (2014). Int. J. Pharmacol. 10, 160.

    Article  CAS  Google Scholar 

  7. M. A. Rezvanfar, M. A. Rezvanfar, A. R. Shahverdi, A. Ahmadi, M. Baeeri, A. Mohammadirad, and M. Abdollahi (2013). Toxicol. Appl. Pharmacol. 266, 356.

    Article  CAS  PubMed  Google Scholar 

  8. L. Shi, W. Xun, W. Yue, C. Zhang, Y. Ren, Q. Liu, Q. Wang, and L. Shi (2011). Anim. Feed Sci. Technol. 163, 136.

    Article  CAS  Google Scholar 

  9. L.-G. Shi, R.-J. Yang, W.-B. Yue, W.-J. Xun, C.-X. Zhang, Y.-S. Ren, L. Shi, and F.-L. Lei (2010). Anim. Reprod. Sci. 118, 248.

    Article  CAS  PubMed  Google Scholar 

  10. J. Zhang, X. Wang, and T. Xu (2007). Toxicol. Sci. 101, 22.

    Article  CAS  PubMed  Google Scholar 

  11. E. Kheradmand, F. Rafii, M. H. Yazdi, A. A. Sepahi, A. R. Shahverdi, and M. R. Oveisi (2014). DARU J. Pharm. Sci. 22, 48.

    Article  CAS  Google Scholar 

  12. M. Shakibaie, H. Forootanfar, Y. Golkari, T. Mohammadi-Khorsand, and M. R. Shakibaie (2015). J. Trace Elem. Med. Biol. 29, 235.

    Article  CAS  PubMed  Google Scholar 

  13. J. Yip, L. Liu, K.H. Wong, P.H. Leung, C.W.M. Yuen, and M.C. Cheung (2014), J. Appl. Polym. Sci. 131.

  14. Y. Huang, L. He, W. Liu, C. Fan, W. Zheng, Y.-S. Wong, and T. Chen (2013). Biomaterials 34, 7106.

    Article  CAS  PubMed  Google Scholar 

  15. N. Srivastava and M. Mukhopadhyay (2013). Powder Technol. 244, 26.

    Article  CAS  Google Scholar 

  16. P. A. Tran and T. J. Webster (2011). Int. J. Nanomed. 6, 1553.

    CAS  Google Scholar 

  17. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, and T. Li, Anisotropic metal Nanoparticles: Synthesis, Assembly, and Optical Applications (ACS Publications, 2005).

  18. M. Panahi-Kalamuei, M. Salavati-Niasari, and S. M. Hosseinpour-Mashkani (2014). J. Alloys Compd. 617, 627.

    Article  CAS  Google Scholar 

  19. J. Zhang, S.-Y. Zhang, J.-J. Xu, and H.-Y. Chen (2004). Chin. Chem. Lett. 15, 1345.

    CAS  Google Scholar 

  20. C. Ramamurthy, K. Sampath, P. Arunkumar, M. S. Kumar, V. Sujatha, K. Premkumar, and C. Thirunavukkarasu (2013). Bioprocess Biosyst. Eng. 36, 1131.

    Article  CAS  PubMed  Google Scholar 

  21. V. Polshettiwar and R. S. Varma (2010). Green Chem. 12, 743.

    Article  CAS  Google Scholar 

  22. J. Sarkar, P. Dey, S. Saha, and K. Acharya (2011). IET Micro Nano Lett. 6, 599.

    Article  CAS  Google Scholar 

  23. S. Pouri, H. Motamedi, S. Honary, and I. Kazeminezhad (2017), Braz. Arch. Biol. Technol. 60.

  24. S.-Y. Zhang, J. Zhang, H.-Y. Wang, and H.-Y. Chen (2004). Mater. Lett. 58, 2590.

    Article  CAS  Google Scholar 

  25. N. Mollania, R. Tayebee, and F. Narenji-Sani (2016). Res. Chem. Intermed. 42, 4253.

    Article  CAS  Google Scholar 

  26. Y. Zhang, J. Wang, and L. Zhang (2010). Langmuir 26, 17617.

    Article  CAS  PubMed  Google Scholar 

  27. A. E. Raevskaya, A. L. Stroyuk, S. Y. Kuchmiy, V. M. Dzhagan, D. R. Zahn, and S. Schulze (2008). Solid State Commun. 145, 288.

    Article  CAS  Google Scholar 

  28. W. Liao, Z. Yu, Z. Lin, Z. Lei, Z. Ning, J. M. Regenstein, J. Yang, and J. Ren (2015). Sci. Rep. 5, 18629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. F. Yang, Q. Tang, X. Zhong, Y. Bai, T. Chen, Y. Zhang, Y. Li, and W. Zheng (2012). Int. J. Nanomed. 7, 835.

    Article  CAS  Google Scholar 

  30. S. Skalickova, V. Milosavljevic, K. Cihalova, P. Horky, L. Richtera, and V. Adam (2017). Nutrition 33, 83.

    Article  CAS  PubMed  Google Scholar 

  31. N. Arulnathan, R. Karunakaran, V. Balakrishnan, M. Chellapandian, and K. Geetha (2016), Synthesis and Characterization of Nano Selenium as Feed Supplement.

  32. M. Kargar Razi, R. Sarraf Maamoury, and S. Banihashemi (2011). Int. J. Nano Dimens. 1, 261.

    Google Scholar 

  33. G. Sharma, A. R. Sharma, R. Bhavesh, J. Park, B. Ganbold, J.-S. Nam, and S.-S. Lee (2014). Molecules 19, 2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. F. Jiang, W. Cai, and G. Tan (2017). Nanoscale Res. Lett. 12, 401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B. Gates, B. Mayers, A. Grossman, and Y. Xia (2002). Adv. Mater. 14, 1749.

    Article  CAS  Google Scholar 

  36. N. Srivastava and M. Mukhopadhyay (2015). Bioprocess Biosyst. Eng. 38, 1723.

    Article  CAS  PubMed  Google Scholar 

  37. L. Fritea, V. Laslo, S. Cavalu, T. Costea, and S. I. Vicas (2017), Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Series) 27.

  38. J. Zhang, H. Wang, Y. Bao, and L. Zhang (2004). Life Sci. 75, 237.

    Article  CAS  PubMed  Google Scholar 

  39. J.-S. Zhang, X.-Y. Gao, L.-D. Zhang, and Y.-P. Bao (2001). Biofactors 15, 27.

    Article  PubMed  Google Scholar 

  40. C. Murray, D. J. Norris, and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706.

    Article  CAS  Google Scholar 

  41. G. A. Sotiriou and S. E. Pratsinis (2010). Environ. Sci. Technol. 44, 5649.

    Article  CAS  PubMed  Google Scholar 

  42. S. Soflaei, A. Dalimi, A. Abdoli, M. Kamali, V. Nasiri, M. Shakibaie, and M. Tat (2014). Comp. Clin. Pathol. 23, 15.

    Article  CAS  Google Scholar 

  43. G. M. Khiralla and B. A. El-Deeb (2015). LWT-Food Sci. Technol. 63, 1001.

    Article  CAS  Google Scholar 

  44. H. Wang, W. Wei, S. Y. Zhang, Y. X. Shen, L. Yue, N. P. Wang, and S. Y. Xu (2005). J. Pineal Res. 39, 156.

    Article  CAS  PubMed  Google Scholar 

  45. E. Cremonini, E. Zonaro, M. Donini, S. Lampis, M. Boaretti, S. Dusi, P. Melotti, M. M. Lleo, and G. Vallini (2016). Microb. Biotechnol. 9, 758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. E. E. Alberto, L. L. Rossato, S. H. Alves, D. Alves, and A. L. Braga (2011). Org. Biomol. Chem. 9, 1001.

    Article  CAS  PubMed  Google Scholar 

  47. S. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. Gordon, K. Eiglmeier, S. Gas, and C. Barry Iii (1998). Nature 393, 537.

    Article  CAS  PubMed  Google Scholar 

  48. K. Tam, C. T. Ho, J.-H. Lee, M. Lai, C. H. Chang, Y. Rheem, W. Chen, H.-G. Hur, and N. V. Myung (2010). Biosci. Biotechnol. Biochem. 74, 696.

    Article  CAS  PubMed  Google Scholar 

  49. J. B. Hall, M. A. Dobrovolskaia, A. K. Patri, and S. E. McNeil (2007).

  50. Y. Shin, J. M. Blackwood, I.-T. Bae, B. W. Arey, and G. J. Exarhos (2007). Mater. Lett. 61, 4297.

    Article  CAS  Google Scholar 

  51. M. Quintana, E. Haro-Poniatowski, J. Morales, and N. Batina (2002). Appl. Surf. Sci. 195, 175.

    Article  CAS  Google Scholar 

  52. K. Andries, P. Verhasselt, J. Guillemont, H. W. Göhlmann, J.-M. Neefs, H. Winkler, J. Van Gestel, P. Timmerman, M. Zhu, and E. Lee (2005). Science 307, 223.

    Article  CAS  PubMed  Google Scholar 

  53. S. G. Franzblau, R. S. Witzig, J. C. McLaughlin, P. Torres, G. Madico, A. Hernandez, M. T. Degnan, M. B. Cook, V. K. Quenzer, and R. M. Ferguson (1998). J. Clin. Microbiol. 36, 362.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Z. Sabouri, A. Akbari, H. A. Hosseini, and M. Darroudi (2018). J. Mol. Struct. 1173, 931.

    Article  CAS  Google Scholar 

  55. S. Nath, S. K. Ghosh, S. Panigahi, T. Thundat, and T. Pal (2004). Langmuir 20, 7880.

    Article  CAS  PubMed  Google Scholar 

  56. H. Sert, Y. Yıldız, T. O. Okyay, B. Gezer, Z. Dasdelen, B. Sen, and F. Sen (2016). J. Clust. Sci. 27, 1953.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The technical support for this work has been provided by Payame Noor University of Mashhad and Mashhad University of Medical Sciences based on the Ph.D. thesis of Ms. M. Kazemi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Darroudi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, M., Akbari, A., Soleimanpour, S. et al. The Role of Green Reducing Agents in Gelatin-Based Synthesis of Colloidal Selenium Nanoparticles and Investigation of Their Antimycobacterial and Photocatalytic Properties. J Clust Sci 30, 767–775 (2019). https://doi.org/10.1007/s10876-019-01537-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01537-4

Keywords

Navigation