Skip to main content

Advertisement

Log in

Energy-guided synapse coupling between neurons under noise

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

From a physical viewpoint, any external stimuli including noise disturbance can inject energy into the media, and the electric response is regulated by the equivalent electric stimulus. For example, mode transition in electric activities in neurons occurs and kinds of spatial patterns are formed during the wave propagation. In this paper, a feasible criterion is suggested to explain and control the growth of electric synapse and memristive synapse between Hindmarsh-Rose neurons in the presence of noise. It is claimed that synaptic coupling can be enhanced adaptively due to energy diversity, and the coupling intensity is increased to a saturation value until two neurons reach certain energy balance. Two identical neurons can reach perfect synchronization when electric synapse coupling is further increased. This scheme is also considered in a chain neural network and uniform noise is applied on all neurons. However, reaching synchronization becomes difficult for neurons in presenting spiking, bursting, and chaotic and periodic patterns, even when the local energy balance is corrupted to continue further growth of the coupling intensity. In the presence of noise, energy diversity becomes uncertain because of spatial diversity in excitability, and development of regular patterns is blocked. The similar scheme is used to control the growth of memristive synapse for neurons, and the synchronization stability and pattern formation are controlled by the energy diversity among neurons effectively. These results provide possible guidance for knowing the biophysical mechanism for synapse growth and energy flow can be applied to control the synchronous patterns between neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Data are available upon reasonable request from the corresponding author.

References

  1. Gerstner, W., Naud, R.: How good are neuron models? Science 326, 379–380 (2009)

    Article  Google Scholar 

  2. Nagel, K.I., Wilson, R.I.: Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nature Neurosci. 14, 208–216 (2011)

    Article  Google Scholar 

  3. Wu, F., Ma, J., Zhang, G.: Energy estimation and coupling synchronization between biophysical neurons. Sci. China Technol. Sci. 63, 625–636 (2020)

    Article  ADS  Google Scholar 

  4. Schwemmer, M.A., Fairhall, A.L., Denéve, S., et al.: Constructing precisely computing networks with biophysical spiking neurons. J. Neurosci. 35, 10112–10134 (2015)

    Article  Google Scholar 

  5. Gjorgjieva, J., Drion, G., Marder, E.: Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance. Curr. Opin. Neurobiol. 37, 44–52 (2016)

    Article  Google Scholar 

  6. Kafraj, M.S., Parastesh, F., Jafari, S.: Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos, Solitons Fractals 137, 109782 (2020)

    Article  MathSciNet  Google Scholar 

  7. Wu, F., Wang, C., Jin, W., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Baysal, V., Yilmaz, E.: Effects of electromagnetic induction on vibrational resonance in single neurons and neuronal networks. Physica A 537, 122733 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rajagopal, K., Moroz, I., Karthikeyan, A., et al.: Wave propagatin in a network of extended Morris-Lecar neurons with electromagnetic induction and its local kinetics. Nonlinear Dyn. 100, 3625–3644 (2020)

    Article  Google Scholar 

  10. Rostami, Z., Jafari, S.: Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cogn. Neurodyn. 12, 235–254 (2018)

    Article  Google Scholar 

  11. Zhou, P., Yao, Z., Ma, J., et al.: A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos, Solitons Fractals 145, 110751 (2021)

    Article  MathSciNet  Google Scholar 

  12. Liang, L., Sun, C., Zhang, R., et al.: Piezotronic effect determined neuron-like differentiation of adult stem cells driven by ultrasound. Nano Energy 90, 106634 (2021)

    Article  Google Scholar 

  13. Marino, A., Genchi, G.G., Mattoli, V., et al.: Piezoelectric nanotransducers: The future of neural stimulation. Nano Today 14, 9–12 (2017)

    Article  Google Scholar 

  14. Liu, Y., Xu, W., Ma, J., et al.: A new photosensitive neuron model and its dynamics. Front. Inform. Technol. Electron. Eng. 21, 1387–1396 (2020)

    Article  Google Scholar 

  15. Go, M.A., Daria, V.R.: Light-neuron interactions: key to understanding the brain. J. Optics 19, 023002 (2017)

    Article  ADS  Google Scholar 

  16. Ward, A., Liu, J., Feng, Z., et al.: Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nature Neurosci. 11, 916–922(2008)

  17. Xing, M., Song, X., Yang, Z., et al.: Bifurcations and excitability in the temperature-sensitive Morris-Lecar neuron. Nonlinear Dyn. 100, 2687–2698 (2020)

    Article  Google Scholar 

  18. Wang, Q., Ma, X., Wang, H.: Information processing and energy efficiency of temperature-sensitive Morris-Lecar neuron. Biosystems 197, 104215 (2020)

    Article  Google Scholar 

  19. Zhu, Z., Ren, G., Zhang, X., et al.: Effects of multiplicative-noise and coupling on synchronization in thermosensitive neural circuits. Chaos, Solitons Fractals 151, 111203 (2021)

    Article  MathSciNet  Google Scholar 

  20. Xu, Y., Jia, Y., Ma, J., et al.: Synchronization between neurons coupled by memristor. Chaos, Solitons Fractals 104, 435–442 (2017)

    Article  ADS  Google Scholar 

  21. Zhang, X., Wang, C., Ma, J., et al.: Control and synchronization in nonlinear circuits by using a thermistor. Mod. Phys. Lett. B 34, 2050267 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zhang, X., Yao, Z., Guo, Y., et al.: Target wave in the network coupled by thermistors. Chaos, Solitons Fractals 142, 110455 (2021)

    Article  MathSciNet  Google Scholar 

  23. Zhang, X.F., Ma, J., Xu, Y., et al.: Synchronization between FitzHugh-Nagumo neurons coupled with phototube. Acta Phys. Sin. 70, 090502 (2021)

    Article  Google Scholar 

  24. Xie, Y., Yao, Z., Hu, X., et al.: Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chinese Phys. B 30, 120510 (2021)

    Article  ADS  Google Scholar 

  25. Zhang, Y., Wang, C.N., Tang, J., et al.: Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63, 2328–2338 (2020)

    Article  ADS  Google Scholar 

  26. Guo, Y., Zhou, P., Yao, Z., et al.: Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dyn. 105, 3603–3614 (2021)

    Article  Google Scholar 

  27. Zhang, X., Ma, J.: Wave filtering and firing modes in a light-sensitive neural circuit. J. Zhejiang Univ. Sci. A 22, 707–720 (2021)

    Article  Google Scholar 

  28. Yao, Z., Wang, C.: Control the collective behaviors in a functional neural network. Chaos, Solitons Fractals 152, 111361 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Remi, T., Subha, P.A., Usha, K.: Collective dynamics of neural network with distance dependent field coupling. Commun. Nonlinear Sci. Numer. Simulat. 110, 106390 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, C.Y., Zhang, J.Q., Wu, Z.X., et al.: Collective firing patterns of neuronal networks with short-term synaptic plasticity. Phys. Rev. E 103, 022312 (2021)

    Article  ADS  Google Scholar 

  31. Xie, Y., Ma, J.: How to discern external acoustic waves in a piezoelectric neuron under noise? J. Biol. Phys. 48, 339–353 (2022)

    Article  Google Scholar 

  32. Xie, Y., Zhou, P., Yao, Z., et al.: Response mechanism in a functional neuron under multiple stimuli. Physica A 607, 128175 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Qian, Y., Zhang, C., Zhang, G., et al.: Collective sustained oscillations in excitable small-world networks: the moderate fundamental loop or the minimum Winfree loop? Nonlinear Dyn. 99, 1415–1431 (2020)

    Article  Google Scholar 

  34. Liu, Y., Sun, Z., Yang, X., et al.: Rhythmicity and firing modes in modular neuronal network under electromagnetic field. Nonlinear Dyn. 104, 4391–4400 (2021)

    Article  Google Scholar 

  35. Shen, Z., Deng, Z., Du, L., et al.: Control and analysis of epilepsy waveforms in a disinhibition model of cortex network. Nonlinear Dyn. 103, 2063–2079 (2021)

    Article  Google Scholar 

  36. Si, H., Sun, X.: Information propagation in recurrent neuronal populations with mixed excitatory- inhibitory synaptic connections. Nonlinear Dyn. 104, 557–576 (2021)

    Article  Google Scholar 

  37. Lin, H.R., Wang, C.H.: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network. Appl. Math. Comput. 369, 124840 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Asir, M.P., Prasad, A., Kuznetsov, N.V., et al.: Chimera states in a class of hidden oscillatory networks. Nonlinear Dyn. 104, 645–1655 (2021)

    Google Scholar 

  39. Chen, M., Zheng, Q., Wu, R., et al.: Spatiotemporal patterns in a general networked activator–substrate model. Nonlinear Dyn. 106, 3521–3538 (2021)

    Article  Google Scholar 

  40. Yuan, G., Gao, Z., Yan, S., et al.: Termination of a pinned spiral wave by the wave train with a free defect. Nonlinear Dyn. 104, 2583–2597 (2021)

    Article  Google Scholar 

  41. Yao, Z., Zhou, P., Alsaedi, A., et al.: Energy flow-guided synchronization between chaotic circuits. Appl. Math. Comput. 374, 124998 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Liu, Z., Zhou, P., Ma, J., et al.: Autonomic learning via saturation gain method, and synchronization between neurons. Chaos, Solitons Fractals 131, 109533 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. P. Roy. Soc. London. B. Biol. Sci. 221, 87–102 (1984)

    ADS  Google Scholar 

  44. Torrealdea, F.J., Sarasola, C., d’Anjou, A.: Energy consumption and information transmission in model neurons. Chaos, Solitons Fractals 40, 60–68 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Zhou, P., Hu, X., Zhu, Z., et al.: What is the most suitable Lyapunov function? Chaos, Solitons Fractals 150, 111154 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sarasola, C., Torrealdea, F.J., d’Anjou, A., et al.: Energy balance in feedback synchronization of chaotic systems. Phys. Rev. E 69, 011606 (2004)

    Article  ADS  Google Scholar 

  47. Torrealdea, F.J., d’Anjou, A., Graña, M., et al.: Energy aspects of the synchronization of model neurons. Phys. Rev. E 74, 011905 (2006)

    Article  ADS  Google Scholar 

  48. Wang, C., Sun, G., Yang, F., et al.: Capacitive coupling memristive systems for energy balance. Int. J. Electron. Commun. (AEÜ). 153, 154280(2022)

  49. Ma, X.W., Xu, Y.: Taming the hybrid synapse under energy balance between neurons. Chaos, Solitons Fractals 159, 112149 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xie, Y., Yao, Z., Ma, J.: Phase synchronization and energy balance between neurons. Front. Inform. Technol. Electron. Eng. 23, 1407–1420 (2022)

    Article  Google Scholar 

  51. Wu, F, Q., Guo, Y. T., Ma, J.: Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn. 109, 2063–2084(2022)

  52. Zhou, P., Zhang, X.F., Ma, J.: How to wake up the electric synapse coupling between neurons? Nonlinear Dyn. 108, 1681–1695 (2022)

    Article  Google Scholar 

  53. Yao, C.: Synchronization and multistability in the coupled neurons with propagation and processing delays. Nonlinear Dyn. 101, 2401–2411 (2020)

    Article  Google Scholar 

  54. Kong, X., Jiang, J., Zhou, C., et al.: Sommerfeld effect and synchronization analysis in a simply supported beam system excited by two non-ideal induction motors. Nonlinear Dyn. 100, 2047–2070 (2020)

    Article  Google Scholar 

  55. Aguirre, L.A., Freitas, L.: Control and observability aspects of phase synchronization. Nonlinear Dyn. 91, 2203–2217 (2018)

    Article  Google Scholar 

  56. Montanari, A.N., Freitas, L., Torres, L.A.B., et al.: Phase synchronization analysis of bridge oscillators between clustered networks. Nonlinear Dyn. 97, 2399–2411 (2019)

    Article  MATH  Google Scholar 

  57. Li, T., Wang, G., Yu, D., et al.: Synchronization mode transitions induced by chaos in modified Morris-Lecar neural systems with weak coupling. Nonlinear Dyn. 108, 2611–2625 (2022)

    Article  Google Scholar 

  58. Fossi, J.T., Deli, V., Njitacke, Z.T., et al.: Phase synchronization, extreme multistability and its control with selection of a desired pattern in hybrid coupled neurons via a memristive synapse. Nonlinear Dyn. 109, 925–942 (2022)

    Article  Google Scholar 

  59. Li, Z., Zhou, H., Wang, M., et al.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models. Nonlinear Dyn. 104, 1455–1473 (2021)

    Article  Google Scholar 

  60. Liu, Y., Ren, G., Zhou, P., et al.: Synchronization in networks of initially independent dynamical systems. Physica A 520, 370–380 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Ma, J.: Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ. Sci. A. https://doi.org/10.1631/jzus.A2200469(2022)

  62. Majhi, S., Perc, M., Ghosh, D.: Dynamics on higher-order networks: A review. J. R. Soc. Interface 19, 20220043 (2022)

    Article  Google Scholar 

  63. Gosak, M., Milojević, M., Duh, M., et al.: Networks behind the morphology and structural design of living systems. Phys. Life Rev. 41, 1–21 (2022)

    Article  ADS  Google Scholar 

  64. Trenchard, H., Perc, M.: Energy saving mechanisms, collective behavior and the variation range hypothesis in biological systems: a review. Biosystems 147, 40–66 (2016)

    Article  Google Scholar 

  65. Xie, Y., Yao, Z., Ma, J.: Formation of local heterogeneity under energy collection in neural networks. Sci. China Technol. Sci. https://doi.org/10.1007/s11431-022-2188-2(2022)

  66. Boaretto, B.R.R., Budzinski, R.C., Prado, T.L., et al.: Mechanism for explosive synchronization of neural networks. Phys. Rev. E 100, 052301 (2019)

    Article  ADS  Google Scholar 

  67. Boaretto, B.R.R., Budzinski, R.C., Prado, T.L., et al.: Neuron dynamics variability and anomalous phase synchronization of neural networks. Chaos 28, 106304 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Lin, H., Wang, C., Chen, C., et al.: Neural bursting and synchronization emulated by neural networks and circuits. IEEE T. Circuits-I 68, 3397–3410 (2021)

    Google Scholar 

  69. Hütt, M.T., Kaiser, M., Hilgetag, C.C.: Perspective: network-guided pattern formation of neural dynamics. Philos. T. R. Soc. B 369, 20130522 (2014)

    Article  Google Scholar 

  70. Mineeja, K.K., Ignatius, R.P.: Spatiotemporal activities of a pulse-coupled biological neural network. Nonlinear Dyn. 92, 1881–1897(2018)

Download references

Funding

This project is partially supported by National Natural Science Foundation of China under Grant Nos. 12072139.

Author information

Authors and Affiliations

Authors

Contributions

Bo Hou finished the definition of dynamical model, numerical results, and figures. Jun Ma suggested this study, wrote the original draft, edited the final version, and explained the biophysical mechanism and numerical results. Feifei Yang verified the numerical results and model description.

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Ethics approval

This is a theoretical study. The Lanzhou University of Technological Research Ethics Committee has confirmed that no ethical approval is required.

Informed consent

All the authors (Bo Hou, Jun Ma, and Feifei Yang) agree to submit and publish this work in Journal of Biological Physics.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, B., Ma, J. & Yang, F. Energy-guided synapse coupling between neurons under noise. J Biol Phys 49, 49–76 (2023). https://doi.org/10.1007/s10867-022-09622-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-022-09622-y

Keywords

Navigation