Skip to main content

Advertisement

Log in

How to wake up the electric synapse coupling between neurons?

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Both electric and chemical synapses play an important role in receiving and propagating signals, and thus an isolated neuron and neurons in networks can be activated to trigger appropriate firing modes. The synaptic plasticity enables adaptive regulation in the channel current along the synapse connection, and the intrinsic field energy in the media is pumped to keep possible balance between neurons. The Hamilton energy function in biophysical neurons addressed its dependence of energy on firing modes, and the same energy in neurons seldom indicates complete synchronization because the energy function is often composed of more than two variables in the neuron models. In this paper, we claim that the creation and waking up of synapses connection result from the diversity in field energy of neurons. From physical viewpoint, each neuron can be considered as a complex charged body and any external stimulus will change the distribution of field energy. For two and more neurons, the external stimulus-induced fluctuation in field energy will activate the synapses of neurons, and more synaptic connections will be enhanced for keeping energy balance. That is, the coupling intensity via synapse connection to neurons will be regulated in a possible way. In this work, two simple neural circuits are mapped into feasible neuron models for investigating the energy pumping and propagation by adjusting the intensity along the coupling channel until energy balance is approached. Furthermore, a similar case is explored in a chain network, and it is found that continuous energy pumping to the adjacent neurons will build up a network connected by synapses. These results clarify that synapses connection is activated between neurons because of gradient diversity in field energy in neurons and networks, and then synapse connections are waken up effectively when field energy is propagated to and received by adjacent neurons. That is, synapse connections are formed and waken when gradient field energy is shared by more neurons. The main contribution of this work is that a reliable criterion is suggested to explain how energy diversity controls the creation of synapse and the enhancement of synapse connection to neurons. That is, the biophysical mechanism of synaptic connection is controlled by the energy diversity between neurons, and the synapse coupling will terminate its increase in the coupling intensity until reaching energy balance between neurons even in neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Gerstner, W., Naud, R.: How good are neuron models? Science 326(5951), 379–380 (2009)

    Article  Google Scholar 

  2. Shilnikov, A.: Complete dynamical analysis of a neuron model. Nonlinear Dyn. 68, 305–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gomar, S., Ahmadi, A.: Digital multiplierless implementation of biological adaptive-exponential neuron model. IEEE Trans. Circuits Syst. I Regul. Pap. 61, 1206–1219 (2013)

    Article  Google Scholar 

  4. Kasabov, N.: To spike or not to spike: A probabilistic spiking neuron model. Neural Netw. 23, 16–19 (2010)

    Article  Google Scholar 

  5. Lin, H.R., Wang, C., Sun, Y., et al.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100, 3667–3683 (2020)

    Article  Google Scholar 

  6. Longtin, A.: Stochastic resonance in neuron models. J. Stat. Phys. 70, 309–327 (1993)

    Article  MATH  Google Scholar 

  7. Harmer, G.P., Davis, B.R., Abbott, D.: A review of stochastic resonance: Circuits and measurement. IEEE Trans. Instrum. Meas. 51, 299–309 (2002)

    Article  Google Scholar 

  8. McDonnell, M.D., Abbott, D.: What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 5, e1000348 (2009)

    Article  MathSciNet  Google Scholar 

  9. Karak, S., Jacobs, J.S., Kittelmann, M., et al.: Diverse roles of axonemal dyneins in Drosophila auditory neuron function and mechanical amplification in hearing. Sci. Rep. 5, 17085 (2015)

    Article  Google Scholar 

  10. Wang, M., Liao, X., Li, R., et al.: Single-neuron representation of learned complex sounds in the auditory cortex. Nat. Commun. 11, 4361 (2020)

    Article  Google Scholar 

  11. Guo, Y., Zhou, P., Yao, Z., et al.: Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dyn. 105, 3603–3614 (2021)

    Article  Google Scholar 

  12. Mizrahi, A., Shalev, A., Nelken, I.: Single neuron and population coding of natural sounds in auditory cortex. Curr. Opin. Neurobiol. 24, 103–110 (2014)

    Article  Google Scholar 

  13. Wiederman, S.D., O’Carroll, D.C.: Selective attention in an insect visual neuron. Curr. Biol. 23, 156–161 (2013)

    Article  Google Scholar 

  14. Gabbiani, F., Krapp, H.G., Hatsopoulos, N., et al.: Multiplication and stimulus invariance in a looming-sensitive neuron. J. Physiol.-Paris 98(1–3), 19–34 (2004)

    Article  Google Scholar 

  15. Guest, B.B., Gray, J.R.: Responses of a looming-sensitive neuron to compound and paired object approaches. J. Neurophysiol. 95, 1428–1441 (2006)

    Article  Google Scholar 

  16. Gabbiani, F., Krapp, H.G.: Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. J. Neurophysiol. 96, 2951–2962 (2006)

    Article  Google Scholar 

  17. Chowdhury, S., Jarecki, B.W., Chanda, B.: A molecular framework for temperature-dependent gating of ion channels. Cell 158, 1148–1158 (2014)

    Article  Google Scholar 

  18. O’Leary, T., Marder, E.: Temperature-robust neural function from activity-dependent ion channel regulation. Curr. Biol. 26(21), 2935–2941 (2016)

    Article  Google Scholar 

  19. Xing, M., Song, X., Yang, Z., et al.: Bifurcations and excitability in the temperature-sensitive Morris-Lecar neuron. Nonlinear Dyn. 100, 2687–2698 (2020)

    Article  Google Scholar 

  20. Finke, C., Freund, J.A., Rosa, E., Jr., et al.: Temperature-dependent stochastic dynamics of the Huber-Braun neuron model. Chaos 21, 047510 (2011)

    Article  Google Scholar 

  21. Zhou, P., Yao, Z., Ma, J., et al.: A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Solitons Fractals 145, 110751 (2021)

    Article  MathSciNet  Google Scholar 

  22. Zhang, X.F., Ma, J.: Wave filtering and firing modes in a light-sensitive neural circuit. J. Zhejiang Univ.-Sci. A 22, 707–720 (2021)

    Article  Google Scholar 

  23. Liu, Y., Xu, W., Ma, J., et al.: A new photosensitive neuron model and its dynamics. Front. Inf. Technol. Electron. Eng. 21, 1387–1396 (2020)

    Article  Google Scholar 

  24. Xie, Y., Zhu, Z.G., Zhang, X.F., et al.: Control of firing mode in nonlinear neuron circuit driven by photocurrent. Acta Phys. Sin. 70(21), 210502 (2021)

    Article  Google Scholar 

  25. Xie, Y., Yao, Z., Hu, X., et al.: Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chin Phys. B 30, 120510 (2021)

    Article  Google Scholar 

  26. Xu, Y., Liu, M., Zhu, Z., et al.: Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent. Chin. Phys. B 29, 098704 (2020)

    Article  Google Scholar 

  27. Lien, J.P., Fang, T., Buckner, G.D.: Hysteretic neural network modeling of spring-coupled piezoelectric actuators. Smart Mater. Struct. 20(6), 065007 (2011)

    Article  Google Scholar 

  28. Chen, Y., Qiu, J., Sun, H.: A hybrid model of Prandtl-Ishlinskii operator and neural network for hysteresis compensation in piezoelectric actuators. Int. J. Appl. Electromagnet Mech 41(3), 335–347 (2013)

    Article  Google Scholar 

  29. Sheu, G.J., Yang, S.M., Huang, W.L.: Simulating displacement and velocity signals by piezoelectric sensor in vibration control applications. Smart Mater. Res. 2012, 390873 (2012)

    Google Scholar 

  30. Sun, T., Wright, J., Datta-Chaudhuri, T.: Ultrasound powered piezoelectric neurostimulation devices: a commentary. Bioelectron. Med. 6, 16 (2020)

    Article  Google Scholar 

  31. Navaraj, W., Dahiya, R.: Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli. Adv. Intell. Syst. 1, 1900051 (2019)

    Article  Google Scholar 

  32. Yao, Z., Zhou, P., Zhu, Z., et al.: Phase synchronization between a light-dependent neuron and a thermosensitive neuron. Neurocomputing 423, 518–534 (2021)

    Article  Google Scholar 

  33. Bandyopadhyay, S., Das, A., Mukherjee, A., et al.: A linearization scheme for thermistor-based sensing in biomedical studies. IEEE Sens. J. 16, 603–609 (2015)

    Article  Google Scholar 

  34. Keskin, A.Ü., Yanar, T.M.: Steady-state solution of loaded thermistor problems using an electrical equivalent circuit model. Meas. Sci. Technol. 15(10), 2163 (2004)

    Article  Google Scholar 

  35. Uwate, Y., Nishio, Y.: Synchronization phenomena in van der Pol oscillators coupled by a time-varying resistor. Int. J. Bifurc. Chaos 17, 3565–3569 (2007)

    Article  MATH  Google Scholar 

  36. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N., et al.: Memristor: a new concept in synchronization of coupled neuromorphic circuits. J. Eng. Sci. Technol. Rev. 8, 157–173 (2015)

    Article  Google Scholar 

  37. Gambuzza, L.V., Buscarino, A., Fortuna, L., et al.: Memristor-based adaptive coupling for consensus and synchronization. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 1175–1184 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, C., Chen, J., Bao, H., et al.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95, 3385–3399 (2019)

    Article  MATH  Google Scholar 

  39. Li, Z., Zhou, H., Wang, M., et al.: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models. Nonlinear Dyn. 104, 1455–1473 (2021)

    Article  Google Scholar 

  40. Bao, B., Yang, Q., Zhu, D., et al.: Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris-Lecar bi-neuron network. Nonlinear Dyn. 99, 2339–2354 (2020)

    Article  Google Scholar 

  41. Ostojic, S.: Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat. Neurosci. 17(4), 594–600 (2014)

    Article  Google Scholar 

  42. Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 (2000)

    Article  MATH  Google Scholar 

  43. Ma, J., Yang, Z., Yang, L., et al.: A physical view of computational neurodynamics. J. Zhejiang Univ.-Sci. A 20, 639–659 (2019)

    Article  Google Scholar 

  44. Kyprianidis, I.M., Papachristou, V., Stouboulos, I.N., et al.: Dynamics of coupled chaotic Bonhoeffer-van der Pol Oscillators. WSEAS Trans. Syst. 11, 516–526 (2012)

    Google Scholar 

  45. Zhang, Y., Wang, C.N., Tang, J., et al.: Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63, 2328–2338 (2020)

    Article  Google Scholar 

  46. Reinel, D., Dieterich, W., Wolf, T., et al.: Flux-flow phenomena and current-voltage characteristics of Josephson-junction arrays with inductances. Phys. Rev. B 49(13), 9118 (1994)

    Article  Google Scholar 

  47. Zhang, Y., Xu, Y., Yao, Z., et al.: A feasible neuron for estimating the magnetic field effect. Nonlinear Dyn. 102, 1849–1867 (2020)

    Article  Google Scholar 

  48. Zhang, Y., Zhou, P., Tang, J., et al.: Mode selection in a neuron driven by Josephson junction current in presence of magnetic field. Chin. J. Phys. 71, 72–84 (2021)

    Article  MathSciNet  Google Scholar 

  49. Wang, C., Tang, J., Ma, J.: Minireview on signal exchange between nonlinear circuits and neurons via field coupling. Eur. Phys. J. Spec. Top. 228(10), 1907–1924 (2019)

    Article  Google Scholar 

  50. Zhou, P., Hu, X., Zhu, Z., et al.: What is the most suitable Lyapunov function? Chaos Solitons Fractals 150, 111154 (2021)

    Article  MathSciNet  Google Scholar 

  51. Gonze, D., Bernard, S., Waltermann, C., et al.: Spontaneous synchronization of coupled circadian oscillators. Biophys. J . 89, 120–129 (2005)

    Article  Google Scholar 

  52. Wang, C., Guo, S., Xu, Y., et al.: Formation of autapse connected to neuron and its biological function. Complexity 2017, 5436737 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ma, J., Song, X., Tang, J., et al.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Article  Google Scholar 

  54. Yao, C., He, Z., Nakano, T., et al.: Inhibitory-autapse-enhanced signal transmission in neural networks. Nonlinear Dyn. 97, 1425–1437 (2019)

    Article  Google Scholar 

  55. Yilmaz, E., Ozer, M., Baysal, V., et al.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    Article  Google Scholar 

  56. Aghababaei, S., Balaraman, S., Rajagopal, K., et al.: Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network. Chaos Solitons Fractals 153, 111498 (2021)

    Article  MathSciNet  Google Scholar 

  57. Qin, H.X., Ma, J., Jin, W.Y., et al.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)

    Article  Google Scholar 

  58. Protachevicz, P.R., Iarosz, K.C., Caldas, I.L., et al.: Influence of autapses on synchronisation in neural networks with chemical synapses. Front. Syst. Neurosci. 14, 91 (2020)

    Article  Google Scholar 

  59. Yilmaz, E., Baysal, V., Ozer, M., et al.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Physica A 444, 538–546 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Jia, Y., Gu, H., Li, Y., et al.: Inhibitory autapses enhance coherence resonance of a neuronal network. Commun. Nonlinear Sci. Numer. Simul. 95, 105643 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China under Grants 12062009 and 12072139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Zhang, X. & Ma, J. How to wake up the electric synapse coupling between neurons?. Nonlinear Dyn 108, 1681–1695 (2022). https://doi.org/10.1007/s11071-022-07282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07282-0

Keywords

Navigation