Skip to main content
Log in

Sommerfeld effect and synchronization analysis in a simply supported beam system excited by two non-ideal induction motors

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, Sommerfeld effect and self-synchronization of two non-ideal induction motors in a simply supported beam system are studied. Based on fully considering non-ideal characteristics of induction motors and interactions between the beam structure and induction motors, a continuous model is developed and discretized by using the assumed mode method. A typical electromechanical coupling dynamic model of the vibration system is formulated to perform an investigation on its dynamic behaviors and stability. Synchronization and stability analysis are implemented by using the perturbation method. The numerical simulation is used to confirm the feasibility of the analytical approach. The effects of angular speeds, structure parameters and power supply frequencies on Sommerfeld effect and synchronous motion of two induction motors are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Wang, Y., Ding, H., Chen, L.-Q.: Vibration of axially moving hyperelastic beam with finite deformation. Appl. Math. Model. 71, 269–285 (2019)

    Article  MathSciNet  Google Scholar 

  2. Wang, Z., Mak, C.M., Ou, D.: Optimization of geometrical parameters for a supporting structure with two installed coherent machines. Appl. Acoust. 127, 15–23 (2017)

    Article  Google Scholar 

  3. Balthazar, J.M., Mook, D.T., Weber, H.I., Brasil, R.M.L.R.F., Fenili, A., Belato, D., Felix, J.L.P.: An overview on non-ideal vibrations. Meccanica 38, 613–621 (2003)

    Article  Google Scholar 

  4. Samantaray, A.K., Dasgupta, S.S., Bhattacharyya, R.: Sommerfeld effect in rotationally symmetric planar dynamical systems. Int. J. Eng. Sci. 48, 21–36 (2010)

    Article  Google Scholar 

  5. Varanis, M., Balthazar, J.M., Silva, A., Mereles, A.G., Pederiva, R.: Remarks on the Sommerfeld effect characterization in the wavelet domain. J. Vib. Control 25, 98–108 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bharti, S.K., Bisoi, A., Sinha, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect at forward and backward critical speeds in a rigid rotor shaft system with anisotropic supports. J. Sound Vib. 442, 330–349 (2019)

    Article  Google Scholar 

  7. Arens, R.: Corrected Sommerfeld-Wilson rule in geometric quantization. J. Math. Anal. Appl. 59, 105–118 (1977)

    Article  MathSciNet  Google Scholar 

  8. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Quinn, D.D.: An analytical approximated solution and numerical simulations of a non-ideal system with saturation phenomenon. Nonlinear Dyn. 94, 429–442 (2018)

    Article  Google Scholar 

  9. Felix, J.L.P., Balthazar, J.M., Rocha, R.T., Tusset, A.M., Janzen, F.C.: On vibration mitigation and energy harvesting of a non-ideal system with autoparametric vibration absorber system. Meccanica 53, 3177–3188 (2018)

    Article  MathSciNet  Google Scholar 

  10. Gonzalez-Carbajal, J., Dominguez, J.: Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic. Mech. Syst. Signal Process. 96, 366–384 (2017)

    Article  Google Scholar 

  11. Kovriguine, D.A.: Synchronization and sommerfeld effect as typical resonant patterns. Arch. Appl. Mech. 82, 591–604 (2011)

    Article  Google Scholar 

  12. Mukherjee, A., Karmakar, R., Samantaray, A.K.: Modelling of basic induction motors and source loading in rotor–motor systems with regenerative force field. Simul. Pract. Theory 7, 563–576 (1999)

    Article  Google Scholar 

  13. Bisoi, A., Bhattacharyya, R., Samantaray, A.K.: Speed control of 3-phase induction motor in presence of Sommerfeld effect. In: Beran, J., Bílek, M., Žabka, P. (eds.) Advances in mechanism design II, pp. 169–176. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  14. Zhao, C., Zhao, Q., Zhang, Y., Wen, B.: Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of plane motion. J. Mech. Sci. Technol. 25, 49–60 (2011)

    Article  Google Scholar 

  15. Zou, M., Fang, P., Peng, H., Hou, D., Du, M., Hou, Y.: Study on synchronization characteristics for self-synchronous vibration system with dual-frequency and dual-motor excitation. J. Mech. Sci. Technol. 33, 1065–1078 (2019)

    Article  Google Scholar 

  16. Li, L., Chen, X.: Times-frequency synchronization of two exciters with the opposite rotating directions in a vibration system. J. Sound Vib. 443, 591–604 (2019)

    Article  Google Scholar 

  17. Zhang, X., Li, C., Wang, Z., Cui, S.: Synchronous stability of four homodromy vibrators in a vibrating system with double resonant types. Shock Vib. 2018, 1–20 (2018)

    Google Scholar 

  18. Sinha A., Samantaray A.K., Bhattacharyya R.: Self-synchronization of two unbalanced DC motor-driven rotors on a common movable platform. In: Badodkar, D.N., Dwarakanath T.A. (eds.) Machines, Mechanism and Robotics, pp. 207–217. Springer, Singapore (2019)

    Google Scholar 

  19. Sinha A., Bharti S.K., Samantaray A.K., Bhattacharyya R.: Sommerfeld effect and passive energy reallocation in a self-synchronizing system. In: ASME International Mechanical Engineering Congress and Exposition on Dynamics, Vibration and Control, vol. 4a, pp. 1–10. ASME (2018) https://doi.org/10.1115/IMECE2018-87559.

  20. Djanan, A.A.N., Nbendjo, B.R.N.: Effect of two moving non-ideal sources on the dynamic of a rectangular plate. Nonlinear Dyn. 92, 645–657 (2018)

    Article  Google Scholar 

  21. Umans, S.D.: Fitzgerald & Kingsley’s Electric Machinery. McGraw-Hill, New York (2014)

    Google Scholar 

  22. Djanan, A.A.N., Nbendjo, B.R.N., Woafo, P.: Control of vibration on a hinged-hinged beam under a non-ideal excitation using RLC circuit with variable capacitance. Nonlinear Dyn. 63, 477–489 (2011)

    Article  Google Scholar 

  23. Zhang, X., Wen, B., Zhao, C.: Synchronization of three non-identical coupled exciters with the same rotating directions in a far-resonant vibrating system. J. Sound Vib. 332, 2300–2317 (2013)

    Article  Google Scholar 

  24. Zhang, X., Wen, B., Zhao, C.: Experimental investigation on synchronization of three co-rotating non-identical coupled exciters driven by three motors. J. Sound Vib. 333, 2898–2908 (2014)

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 51705337, 51675350) and China Postdoctoral Science Foundation (Grant No. 2017M611258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxi Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The terms of Eq. (28)

$$ p_{11} = \eta_{1}^{2} m_{0} \sum\limits_{j = 1}^{n} {\frac{{\psi_{j}^{2} (x_{1} )\cos \gamma_{j} }}{{2\mu_{j} }}} , $$
(A.1)
$$ p_{12} = \eta_{1} \eta_{2} m_{0} \sum\limits_{j = 1}^{n} {\frac{{\psi_{j} (x_{1} )\psi_{j} (x_{2} )\cos \left( { - \theta_{0} - \gamma_{j} } \right)}}{{2\mu_{j} }}} , $$
(A.2)
$$ p_{21} = \eta_{1} \eta_{2} m_{0} \sum\limits_{j = 1}^{n} {\frac{{\psi_{j} (x_{1} )\psi_{j} (x_{2} )\cos \left( {\theta_{0} - \gamma_{j} } \right)}}{{2\mu_{j} }}} , $$
(A.3)
$$ p_{22} = m_{0} \eta_{2}^{2} \sum\limits_{j = 1}^{n} {\frac{{\psi_{j}^{2} (x_{2} )\cos \gamma_{j} }}{{2\mu_{j} }}} , $$
(A.4)
$$ q_{11} = - m_{0} \eta_{1}^{2} \varOmega \sum\limits_{j = 1}^{n} {\frac{{\psi_{j}^{2} (x_{1} )\sin ( - \gamma_{j} )}}{{\mu_{j} }}} , $$
(A.5)
$$ q_{12} = - m_{0} \eta_{1} \eta_{2} \varOmega \sum\limits_{j = 1}^{n} {\frac{{\psi_{j} (x_{1} )\psi_{j} (x_{2} )\sin \left( { - \theta_{0} - \gamma_{j} } \right)}}{{\mu_{j} }}} , $$
(A.6)
$$ q_{13} = m_{0} \eta_{1} \eta_{2} \varOmega \sum\limits_{j = 1}^{n} {\frac{{\psi_{j} (x_{1} )\psi_{j} (x_{2} )\cos \left( { - \theta_{0} - \gamma_{j} } \right)}}{{2\mu_{j} }}} , $$
(A.7)
$$ q_{21} = - m_{0} \eta_{1} \eta_{2} \varOmega \sum\limits_{j = 1}^{n} {\frac{{\psi_{j} (x_{1} )\psi_{j} (x_{2} )\sin \left( {\theta_{0} - \gamma_{j} } \right)}}{{\mu_{j} }}} , $$
(A.8)
$$ q_{22} = - m_{0} \eta_{2}^{2} \varOmega \sum\limits_{j = 1}^{n} {\frac{{\psi_{j}^{2} (x_{2} )\sin ( - \gamma_{j} )}}{{\mu_{j} }}} , $$
(A.9)
$$ q_{23} = - m_{0} \eta_{1} \eta_{2} \varOmega \sum\limits_{j = 1}^{n} {\frac{{\psi_{i} (x_{1} )\psi_{i} (x_{2} )\cos \left( {\theta_{0} - \gamma_{j} } \right)}}{{2\mu_{j} }}} , $$
(A.10)
$$ \chi_{1} = - m_{0} \eta_{1} \varOmega \sum\limits_{j = 1}^{n} {\frac{{\psi_{j} (x_{1} )\left( {\eta_{1} \psi_{j} (x_{1} )\sin ( - \gamma_{j} ) + \eta_{2} \psi_{j} (x_{2} )\sin ( - \theta_{0} - \gamma_{j} )} \right)}}{{2\mu_{j} }}} , $$
(A.11)
$$ \chi_{2} = - m_{0} \eta_{2} \varOmega \sum\limits_{j = 1}^{n} {\frac{{\psi_{j} (x_{2} )\left( {\eta_{2} \psi_{j} (x_{2} )\sin ( - \gamma_{j} ) + \eta_{1} \psi_{j} (x_{1} )\sin (\theta_{0} - \gamma_{j} )} \right)}}{{2\mu_{j} }}} , $$
(A.12)
$$ \begin{aligned} k_{e} & = - \varOmega \frac{{\partial T_{e} }}{\partial \omega }(\varOmega ) \\ & = \frac{{6\varOmega n_{p}^{2} V^{2} R_{r}^{2} \left( {R_{s} + 2\pi R_{r} f_{s} /(2\pi f_{s} - n_{p} \varOmega )} \right)2\pi f_{s} }}{{(2\pi f_{s} - n_{p} \varOmega )^{3} \left( {\left( {R_{s} + 2\pi R_{r} f_{s} /(2\pi f_{s} - n_{p} \varOmega )} \right)^{2} + 2\pi f_{s}^{2} \left( {L_{1s} + L_{1r} } \right)^{2} } \right)^{2} }} \\ & \quad - \frac{{3\varOmega n_{p} V^{2} R_{r} }}{{(2\pi f_{s} - n_{p} \varOmega )^{2} \left( {\left( {R_{s} + R_{r} 2\pi f_{s} /(2\pi f_{s} - n_{p} \varOmega )} \right)^{2} + 2\pi f_{s}^{2} \left( {L_{1s} + L_{1r} } \right)^{2} } \right)}}, \\ \end{aligned} $$
(A.13)

where ke10 and ke20 can be obtained by substituting the parameters of motors 1 and 2 into Eq. (A.13), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Jiang, J., Zhou, C. et al. Sommerfeld effect and synchronization analysis in a simply supported beam system excited by two non-ideal induction motors. Nonlinear Dyn 100, 2047–2070 (2020). https://doi.org/10.1007/s11071-020-05626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05626-2

Keywords

Navigation