Skip to main content
Log in

Phase synchronization analysis of bridge oscillators between clustered networks

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recent works aim to establish necessary and sufficient conditions to guarantee phase synchronization between clusters of oscillators, usually assuming knowledge of the intra-cluster connections, that is, connections among oscillators of the same cluster. In this context, this paper takes a different approach in studying the stability of the synchronous manifold between clusters. By focusing on the inter-cluster relations between the bridge oscillators, a simplified problem is considered where intra-cluster effects are described as perturbations. Based on Lyapunov’s direct method, a framework is put forward to derive sufficient conditions for the ultimately boundedness of the phase difference between the bridge oscillators. This analysis does not rely on full information on the adjacency matrix describing the specific connections among oscillators within each cluster, an information that is not always available. The established theoretical conditions are compared to numerical simulations in two examples: (i) two interconnected clusters of Kuramoto oscillators, and (ii) a benchmark model of a power grid. Results indicate that the method is effective and that its conservativeness depends on the available network information. This framework can be generalized to different networks and oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This definition of PS is also referred in the literature as “weak phase locking” [32] or “phase cohesiveness” [15].

  2. During short intervals of time, the bridge oscillators remain phase synchronized, with \(\theta (t)\) hardly varying within some finite ultimate bound. These brief moments of PS are abruptly interrupted by “phase slips” (steps) of \(2\pi \) in \(\theta (t)\), characterizing a phenomenon known as intermittent PS [26]. This is highlighted in the inset plot of Fig. 3a (\(K=0.36\)).

  3. Note that \(\left| \frac{\varDelta \omega }{2K} \right| \le 1\) is a necessary condition for PS stability of a coupled pair of Kuramoto oscillators [24].

References

  1. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  2. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  3. Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69(1), 32–47 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aguirre, L.A., Portes, L.L., Letellier, C.: Structural, dynamical and symbolic observability: from dynamical systems to networks. PLoS One 13(10), e0206180 (2018)

    Article  Google Scholar 

  6. Hong, H., Choi, M.Y., Kim, B.J.: Synchronization on small-world networks. Phys. Rev. E 65, 026139 (2002)

    Article  Google Scholar 

  7. Batista, C.A., Lameu, E.L., Batista, A.M., Lopes, S.R., Pereira, T., Zamora-López, G., Kurths, J., Viana, R.L.: Phase synchronization of bursting neurons in clustered small-world networks. Phys. Rev. E 86, 016211 (2012)

    Article  Google Scholar 

  8. Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(1), 54–62 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Moreno, Y., Pacheco, F.: Synchronization of Kuramoto oscillators in scale-free networks. Europhys. Lett. 68(4), 603–609 (2004)

    Article  Google Scholar 

  10. McGraw, P.N., Menzinger, M.: Clustering and the synchronization of oscillator networks. Phys. Rev. E 72, 015101 (2005)

    Article  MathSciNet  Google Scholar 

  11. Dahms, T., Lehnert, J., Schöll, E.: Cluster and group synchronization in delay-coupled networks. Phys. Rev. E 86, 016202 (2012)

    Article  Google Scholar 

  12. Zhao, J., Aziz-Alaoui, M.A., Bertelle, C.: Cluster synchronization analysis of complex dynamical networks by input-to-state stability. Nonlinear Dyn. 70(2), 1107–1115 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, J., Feng, J., Xu, C., Zhao, Y.: Cluster synchronization of nonlinearly-coupled complex networks with nonidentical nodes and asymmetrical coupling matrix. Nonlinear Dyn. 67(2), 1635–1646 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schaub, M.T., O’Clery, N., Billeh, Y.N., Delvenne, J.C., Lambiotte, R., Barahona, M.: Graph partitions and cluster synchronization in networks of oscillators. Chaos 26, 094821 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dorfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50(6), 1539–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rodrigues, F.A., Peron, T.K., Ji, P., Kurths, J.: The Kuramoto model in complex networks. Phys. Rep. 610, 1–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, C., Sun, W., Kurths, J.: Synchronization between two coupled complex networks. Phys. Rev. E 76, 046204 (2007)

    Article  Google Scholar 

  18. Tang, H., Chen, L., an Lu, J., Tse, C.K.: Adaptive synchronization between two complex networks with nonidentical topological structures. Physica A 387(22), 5623–5630 (2008)

    Article  Google Scholar 

  19. Wu, X., Zheng, W.X., Zhou, J.: Generalized outer synchronization between complex dynamical networks. Chaos 19, 013109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, Y., Li, C., Wu, Y., Kurths, J.: Generalized synchronization between two different complex networks. Commun. Nonlinear Sci. Numer. Simul. 17, 349–355 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu, W., Liu, B., Chen, T.: Cluster synchronization in networks of coupled nonidentical dynamical systems. Chaos 20, 03120 (2010)

    MathSciNet  Google Scholar 

  22. Favaretto, C., Cenedese, A., Pasqualetti, F.: Cluster synchronization in networks of Kuramoto oscillators. In: 20th IFAC World Conference, vol. 50(1), pp. 2433–2438 (2017)

  23. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: International Symposium on Mathematical Problems in Theoretical Physics, pp. 420–422 (1975)

  24. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143(1–4), 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Prado, T.D.L., Lopes, S.R., Batista, C., Kurths, J., Viana, R.L.: Synchronization of bursting Hodgkin–Huxley-type neurons in clustered networks. Phys. Rev. E 90, 032818 (2014)

    Article  Google Scholar 

  26. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C.: The synchronization of chaotic systems. Phys. Rep. 366(1–2), 1–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  28. Xu, C., Sun, Y., Gao, J., Jia, W., Zheng, Z.: Phase transition in coupled star networks. Nonlinear Dyn. 94(2), 1267–1275 (2018)

    Article  Google Scholar 

  29. Feng, S., Wang, L., Sun, S., Xia, C.: Synchronization properties of interconnected network based on the vital node. Nonlinear Dyn. 93(2), 335–347 (2018)

    Article  MATH  Google Scholar 

  30. Nakao, H., Yasui, S., Ota, M., Arai, K., Kawamura, Y.: Phase reduction and synchronization of a network of coupled dynamical elements exhibiting collective oscillations. Chaos 28, 045103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, G., Wang, X., Li, X.: Fundamentals of Complex Networks, pp. 289–318. Wiley (2015)

  32. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804–1807 (1996)

    Article  MATH  Google Scholar 

  33. Adler, R.: A study of locking phenomena in oscillators. Proc. IRE 34(6), 351–357 (1946)

    Article  Google Scholar 

  34. Li, X., Chen, G.: Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(11), 1381–1390 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grigg, C., Wong, P.: The IEEE reliability test system—1996: a report prepared by the reliability test system task force of the application of probability methods subcommittee. IEEE Trans. Power Syst. 14(3), 1010–1020 (1999)

    Article  Google Scholar 

  36. Dorfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. PNAS 110(6), 2005–2010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bergen, A.R., Hill, D.J.: A structure preserving model for power system stability analysis. IEEE Trans. Power Appar. Syst. PAS–100(1), 25–35 (1981)

    Article  Google Scholar 

  38. Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B 61(4), 485–491 (2008)

    Article  Google Scholar 

  39. Motter, A.E., Myers, S.A., Anghel, M., Nishikawa, T.: Spontaneous synchrony in power-grid networks. Nat. Phys. 9(3), 191–197 (2013)

    Article  Google Scholar 

  40. Nishikawa, T., Motter, A.E.: Comparative analysis of existing models for power-grid synchronization. New J. Phys. 17(1), 15012 (2015)

    Article  Google Scholar 

  41. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

  42. Menara, T., Baggio, G., Bassett, D.S., Pasqualetti, F.: Stability conditions for cluster synchronization in networks of Kuramoto oscillators. IEEE (2019). https://doi.org/10.1109/TCNS.2019.2903914

Download references

Acknowledgements

ANM acknowledges financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (finance code 001). LABT and LAA acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grants Nos. 309268/2017-6 and 302079/2011-4). LF gratefully acknowledges IFMG Campus Betim for an academic leave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur N. Montanari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Proof of Theorem

Proof of Theorem 1

Consider Lemma 1. A change of coordinates \(\theta _0 = \theta - \bar{\theta }\), with \(\bar{\theta } = \sin ^{-1}(\varDelta \omega /2K)\), shifts \({\theta }_0\) to the origin, yielding

$$\begin{aligned} \dot{\theta }_0= & {} \varDelta \omega - 2K \sin (\theta _0 + \bar{\theta }) \nonumber \\= & {} \varDelta \omega - \left( \varDelta \omega \cos \theta _0 + \sqrt{4K^2 - \varDelta \omega ^2}\sin \theta _0\right) , \end{aligned}$$
(21)

where \(\left| \frac{\varDelta \omega }{2K}\right| \le \frac{\sqrt{2}}{2} <1\) by assumption.Footnote 3

Let \(V(\theta _0) = \frac{1}{2}\theta _0^2,~\theta _0 \in D_2\), be a positive definite candidate Lyapunov function for system (21), where \(D_2 = \{\theta _0 \in \mathbb {R}: |\theta _0|<r<\frac{\pi }{2}\}\). It can be shown that \(\dot{V}(\theta _0)\) is definite negative if \(\left| \frac{\varDelta \omega }{2K}\right| \le \frac{\sqrt{2}}{2}\) and \(\theta _0 \in D_2\). Hence, the candidate function is a Lyapunov function, establishing sufficient conditions for the local asymptotic stability of the origin.

The quadratic Lyapunov function \(V(\theta _0)\) satisfies conditions (4) and (6) for \(c_1\le \frac{1}{2} \le c_2\) and \(c_4\ge 1\). Condition (5) is satisfied as follows:

$$\begin{aligned} -c_3|\theta _0|^2&\ge \theta _0\dot{\theta }_0 = |\theta _0|\hbox {sign}(\theta _0)\dot{\theta }_0, \nonumber \\ -c_3|\theta _0|&\ge \left( \varDelta \omega (1 {-} \cos \theta _0) {-} \sqrt{4K^2 {-} \varDelta \omega ^2}\sin \theta _0\right) \hbox {sign}(\theta _0), \nonumber \\ c_3|\theta _0|&\le \hbox {sign}(\theta _0) h(\theta _0) , \end{aligned}$$
(22)

where \(h(x) = |\varDelta \omega |(1 - \cos x) + \sqrt{4K^2 -\varDelta \omega ^2}\sin x\), assuming—without loss of generality—that \(\varDelta \omega \le 0\). Since \(\left| \frac{\varDelta \omega }{2K}\right| \le \frac{\sqrt{2}}{2}\), we have that \(c_3 \le -h(-r)/r\) is the slope of the lower bound of \(\hbox {sign}(\theta _0) h(\theta _0)\), for all \(|\theta _0(t)|<r\). Figure 8 illustrates this derivation.

Fig. 8
figure 8

Illustration of equation (22) derivation. The sinusoidal function h(x), where \(h(0)=0\), is a sum of both functions depicted in gray dotted lines in interval \(x\in \left[ -\pi ,\pi \right] \). The absolute value of the straight line of slope \(c_3=-h(-r)/r\) is the lower bound of \(\hbox {sign}(x)h(x)\). The region of interest \(|x|<r<\frac{\pi }{2}\) is highlighted

By satisfying conditions (4)–(6), system (21) is proven to be exponentially stable. Following Lemma 1, for a perturbation satisfying

$$\begin{aligned} |g(t,\theta )| \le g_\mathrm{max} < \delta = -h(-r) \cdot \epsilon , \quad \forall \theta \in D_1 , \end{aligned}$$
(23)

the solution \(\theta (t)\) is bounded by (14), where

$$\begin{aligned} \alpha = -\frac{(1-\epsilon )\cdot h(-r)}{r}, \quad b =-\frac{r\delta }{h(-r)\cdot \epsilon } . \end{aligned}$$
(24)

Note that \(\delta \) and b are dependent on r, where \(-h(-r)\) is a monotonic function for all \(r<\frac{\pi }{2}\) and radius r, in turn, can be chosen arbitrarily small. Thus, for a given \(\varDelta \omega \) and based on an optimal choice of r, one can define a minimum threshold \(K_\mathrm{c}\), where condition \(\left| \frac{\varDelta \omega }{2K}\right| \le \frac{\sqrt{2}}{2}\) is satisfied, via

$$\begin{aligned}&g_\mathrm{max}< \delta = -h(-r)\cdot \epsilon \nonumber \\&g_\mathrm{max}< \left( -|\varDelta \omega | + 2K\cos \left( r - \tan ^{-1}\beta \right) \right) \cdot \epsilon \nonumber \\&g_\mathrm{max} < \left( 2K - |\varDelta \omega |\right) \cdot \epsilon \nonumber \\&K_\mathrm{c} > \frac{g_\mathrm{max}+|\varDelta \omega |\epsilon }{2\epsilon } . \end{aligned}$$
(25)

where \(r = \tan ^{-1}\beta \) and \(\beta =\sqrt{4K^2-\varDelta \omega ^2}/ |\varDelta \omega |\). It is straightforward to derive (15) from (23) and (24). \(\square \)

Remark 6

In Theorem 1, the choice of r was defined in order to maximize \(\delta \), thus extending Theorem 1 applicability to network systems with higher perturbations \(g_\mathrm{max}\). Moreover, this guarantees that, for a given \(g_\mathrm{max}\), the theoretical estimate of \(K_\mathrm{c}\) is minimum. However, this choice of r is not concerned with providing the smallest theoretical estimate of b. Indeed, if it is of interest to obtain a tighter theoretical ultimate bound, the optimization problem in (25) can be reformulated to find the optimal r for a minimum b subject to \(g_\mathrm{max} < \delta (r)\).

Fig. 9
figure 9

Theoretical ultimate bound b versus the coupling strength K, for different values of r and \((\bar{\omega }_1,\bar{\omega }_2) = (1.0, 1.5)\). Numerical results are shown in black solid line. Theoretical results are shown for \(r=\tan ^{-1}\beta \) (circle); \(r=\frac{\pi }{2}\) (triangle); \(r=\frac{\pi }{4}\) (diamond), and \(r=\frac{\pi }{8}\) (square). For each r, the threshold \(K_\mathrm{c}(r)\) is determined based on (23) and traced in the plot by a dashed line of respective color. (Color figure online)

Figure 9 shows how the choice of r is a trade-off between the estimates of b and \(K_\mathrm{c}\). If r is a constant for all values of K, the smaller r, the closer the theoretical estimate of b is to the numerical results and the higher the threshold \(K_\mathrm{c}\). In Theorem 1, an adaptive choice of \(r=\tan ^{-1}\beta \) is determined in order to acquire a minimum value for \(K_\mathrm{c}\)—aiming for an increase in applicability of Theorem 1 in exchange for precision of b. Nevertheless, it can be seen numerically in Fig. 9 that its respective \(K_\mathrm{c}\) is indeed the smallest, with a satisfactory estimate of b.

B Generalization to multiple bridges

This section shows how the proposed framework could be generalized to deal with network systems with multiple clusters and “bridges”. Consider the network in Fig. 2c as a guideline to study this generalization and assume that all nodes are composed of Kuramoto oscillators as in (10). As illustrated in Fig. 2c, this set of interconnected clusters can be simplified by a set of bridge oscillators plus the perturbation terms. Let \(\theta _{ij}\equiv \phi _i-\phi _j\) and \(\varDelta \omega _{ij} =\omega _i-\omega _j\), then the stability of the bridge oscillators synchronous manifold can be studied through the following set of equations:

$$\begin{aligned} \dot{\theta }_{23}&= \varDelta \omega _{23} - 2a_{23}\sin \theta _{23} -a_{24}\sin \theta _{24} + g_{23}(t,\theta ) \nonumber \\ \dot{\theta }_{24}&= \varDelta \omega _{24} - 2a_{24}\sin \theta _{24} -a_{23}\sin \theta _{23} + g_{24}(t,\theta ) \nonumber \\ \dot{\theta }_{15}&= \varDelta \omega _{15} - 2a_{15}\sin \theta _{15} +a_{56}\sin \theta _{56} + g_{15}(t,\theta ) \nonumber \\ \dot{\theta }_{56}&= \varDelta \omega _{56} - 2a_{56}\sin \theta _{56} -a_{15}\sin \theta _{15} + g_{56}(t,\theta ) \end{aligned}$$
(26)

where \(g_{ij} = \sum _{k\in \mathcal {C}_i}a_{ik}\sin \theta _{ki} -\sum _{k\in \mathcal {C}_j}a_{jk}\sin \theta _{kj}\).

As mentioned earlier, since the study of PS between bridge oscillators can be a first step to achieve full cluster PS, it might be relevant to determine under which conditions all interconnected bridge oscillators PS simultaneously. The proposed perturbation approach could be relevant in this case when the intra-cluster dynamics \(g_{ij}(t,\theta )\) are not exactly known, but its bounds are. In this situation, for the network of Fig. 2c, the sufficient conditions for phase synchronization of all bridge oscillators can be derived by proving the conditions for exponential stability of the four-dimensional system (26) and establishing the upper bound that the perturbation term must follow according to Lemma 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montanari, A.N., Freitas, L., Torres, L.A.B. et al. Phase synchronization analysis of bridge oscillators between clustered networks. Nonlinear Dyn 97, 2399–2411 (2019). https://doi.org/10.1007/s11071-019-05135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05135-x

Keywords

Navigation