Skip to main content
Log in

New 13C-detected experiments for the assignment of intrinsically disordered proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

NMR assignment of intrinsically disordered proteins (IDPs) by conventional HN-detected methods is hampered by the small dispersion of the amide protons chemical shifts and exchange broadening of amide proton signals. Therefore several alternative assignment strategies have been proposed in the last years. Attempting to seize that dispersion of 13C′ and 15N chemical shifts holds even in IDPs, we recently proposed two 13C-detected experiments to directly correlate the chemical shifts of two consecutive 13C′–15N groups in proteins, i.e. without mediation of other nuclei. Main drawback of these experiments is the interruption of the connection at prolines. Here we present new 13C-detected experiments to correlate consecutive 13C′–15N groups in IDPs, hacacoNcaNCO and hacaCOncaNCO, that overcome this limitation. Moreover, the experiments provide recognition of glycine residues, thereby facilitating the assignment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguado-Llera D, Hamidi T, Doménech R, Pantoja-Uceda D, Gironella M, Santoro J, Velázquez-Campoy A, Neira JL, Iovanna JL (2013) Deciphering the binding between Nupr1 and MSL1 and their DNA-repairing activity. PlosOne 8:e78101

    Article  ADS  Google Scholar 

  • Bermel W, Bertini I, Duma L, Emsley L, Felli IC, Pierattelli R, Vasos PR (2005) Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew Chem Int Ed 44:3089–3092

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006) 13C detected protonless NMR spectroscopy of proteins in solution. Progr NMR Spectrosc 48:25–45

    Article  Google Scholar 

  • Bermel W, Felli IC, Kümmerle R, Pierattelli R (2008) 13C direct detection biomolecular NMR. Concepts Magn Reson 32A:183–200

    Article  Google Scholar 

  • Bermel W, Bertini I, Csizmok V, Felli IC, Pierattelli R, Tompa P (2009a) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson 198:275–281

    Article  ADS  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Pierattelli R (2009b) Speeding up 13C direct detection biomolecular NMR experiments. J Am Chem Soc 131:15339–15345

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Gonnelli L, Kozminski W, Piai A, Pierattelli R, Stanek J (2012a) Speeding up sequence specific assignment of IDPs. J Biomol NMR 53:293–301

    Article  Google Scholar 

  • Bermel W, Bertini I, Chill J, Felli IC, Haba N, Kumar V, Pieratelli R (2012b) Exclusively heteronuclear 13C-detected amino-acid-selective NMR experiments for the study of intrinsically disordered proteins (IDP). ChemBioChem 13:2425–2432

    Article  Google Scholar 

  • Bermel W, Felli IC, Gonnelli L, Kozminski W, Piai A, Pieratelli R, Zawadzka-Kazimierczuk A (2013) High-dimensionality 13C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins. J Biomol NMR 57:353–361

    Article  Google Scholar 

  • Bertini I, Felli IC, Kümmerle R, Luchinat C, Pieratelli R (2004) 13C–13C NOESY: a constructive use of 13C-13C spin-diffusion. J Biomol NMR 30:245–251

    Article  Google Scholar 

  • Böhlen JM, Bodenhausen G (1993) Experimental aspects of chirp NMR spectroscopy. J Magn Reson Ser A 102:293–301

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Google Scholar 

  • Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2001) Nuclear magnetic resonance methods for elucidation of structure and dynamics in disordered states. Methods Enzymol 339:258–270

    Article  Google Scholar 

  • Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104:3607–3622

    Article  Google Scholar 

  • Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30

    Article  Google Scholar 

  • Emsley L, Bodenhausen G (1992) Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. J Magn Reson 97:135–148

    ADS  Google Scholar 

  • Feng W, Rios CB, Montelione G (1996) Phase labeling of C–H and C–C spin-system topologies: application in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments for determining backbone resonance assignments in proteins. J Biomol NMR 8:98–104

    Google Scholar 

  • Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41

    Article  Google Scholar 

  • Hellman M, Piirainen H, Jaakola V-P, Permi P (2014) Bridge over troubled proline: assignment of intrinsically disordered proteins using (HCA)CON(CAN)H and (HCA)N(CA)CO(N)H experiments concomitantly with HNCO and i(HCA)CO(CA)NH. J Biomol NMR 58:49–60

    Article  Google Scholar 

  • Hiller S, Wasmer C, Wider G, Wüthrich K (2007) Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J Am Chem Soc 129:10823–10828

    Article  Google Scholar 

  • Hsu ST, Bertoncini CW, Dobson CM (2009) Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange-broadening. J Am Chem Soc 131:7222–7223

    Article  Google Scholar 

  • Jensen MR, Markwick PRL, Meier S, Griesinger C, Zweckstetter M, Grzesiek S, Bernadó P, Blackledge M (2009) Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Structure 17:1169–1185

    Article  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMR View: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  Google Scholar 

  • Kumar D, Hosur RV (2011) hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone (1HN, 15N and 13C′) resonances in 15N/13C-labeled proteins. Magn Reson Chem 49:575–583

    Article  Google Scholar 

  • Mäntylahti S, Aito O, Hellman M, Permi P (2010) HA-detected experiments for the backbone assignment of intrinsically disordered proteins. J Biomol NMR 47:171–181

    Article  Google Scholar 

  • Mäntylahti S, Hellman M, Permi P (2011) Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins. J Biomol NMR 49:99–109

    Article  Google Scholar 

  • Marsh JA, Forman-Kay JD (2010) Sequence determinants of compaction in intrinsically disordered proteins. Biophys J 98:2383–2390

    Article  Google Scholar 

  • Motackova V, Novacek J, Zawadzka-Kazimierczuk A, Kazimierczuk K, Zidek L, Sanderova H, Krasny L, Kozminski W, Sklenar V (2010) Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution enhanced 5D experiments. J Biomol NMR 48:169–177

    Article  Google Scholar 

  • Novacek J, Haba NY, Chill JH, Zidek L, Sklenar V (2012) 4D nonuniformly sampled HCBCACON and 1J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins. J Biomol NMR 53:139–148

    Article  Google Scholar 

  • Pantoja-Uceda D, Santoro J (2013a) Direct correlation of consecutive C′–N groups in proteins: a method for the assignment of intrinsically disordered proteins. J Biomol NMR 57:57–63

    Article  Google Scholar 

  • Pantoja-Uceda D, Santoro J (2013b) A suite of amino acid residue type classification pulse sequences for 13C-detected NMR of proteins. J Magn Reson 234:190–196

    Article  ADS  Google Scholar 

  • Permi P, Annila A (2004) Coherence transfer in proteins. Prog NMR Spectrosc 44:97–137

    Article  Google Scholar 

  • Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456

    Article  Google Scholar 

  • Romero P, Obradovic Z, Li XH, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins Struct Funct Genet 42:38–48

    Article  Google Scholar 

  • Sahu D, Bastidas M, Showalter SA (2014) Generating NMR chemical shift assignments of intrinsically disordered proteins using carbon-detected NMR methods. Anal Biochem 449:17–25

    Article  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog NMR Spectrosc 34:93–158

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Freeman R (1983) Evaluation of a new broadband decoupling sequence: WALTZ-16. J Magn Reson 53:313–340

    ADS  Google Scholar 

  • Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552

    ADS  Google Scholar 

  • Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321

    Article  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  Google Scholar 

  • Tompa P (2011) Unstructural biology coming of age. Curr Opin Struct Biol 21:419–425

    Article  Google Scholar 

  • Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37:509–516

    Article  Google Scholar 

  • Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins Struct Funct Genet 41:415–427

    Article  Google Scholar 

  • Wen J, Wu J, Zhou P (2011) Sparsely sampled high-resolution 4-D experiments for efficient backbone resonance assignment of disordered proteins. J Magn Reson 209:94–100

    Article  ADS  Google Scholar 

  • Yao J, Dyson HJ, Wright PE (1997) Chemical shift dispersion and secondary structure prediction in unfolded and partially folded proteins. FEBS Lett 419:285–289

    Article  Google Scholar 

  • Zhang O, Forman-Kay JD, Shortle D, Kay LE (1997) Triple-resonance NOESY-based experiments with improved spectral resolution: applications to structural characterization of unfolded, partially folded and folded proteins. J Biomol NMR 9:181–200

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by project CTQ2011-22514 from the Spanish Ministerio de Economía y Competitividad. The authors thank J.L. Neira (Universidad Miguel Hernández, Alicante, Spain) and J.L. Iovanna (Centre de Recherche en Cancérologie, Marseille, France) for the Nupr1 sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Santoro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantoja-Uceda, D., Santoro, J. New 13C-detected experiments for the assignment of intrinsically disordered proteins. J Biomol NMR 59, 43–50 (2014). https://doi.org/10.1007/s10858-014-9827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9827-1

Keywords

Navigation