Skip to main content
Log in

In vivo degradation of copolymers prepared from l-lactide, 1,3-trimethylene carbonate and glycolide as coronary stent materials

  • Biocompatibility Studies
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A series of high molecular weight polymers were prepared by ring opening polymerization of l-lactide (l-LA), 1,3-trimethylene carbonate (TMC) and glycolide using stannous octoate as catalyst. The resulting polymers were characterized by gel permeation chromatography, 1H nuclear magnetic resonance, differential scanning calorimeter and tensile tests. All the polymers present high molecular weights. Compared with PLLA and PTLA copolymers, the terpolymers exhibit interesting properties such as improved toughness and lowered crystallinity with only slightly reduced mechanical strength. In vivo degradation was performed by subcutaneous implantation in rats to evaluate the potential of the copolymers as bioresorbable coronary stent material. The results show that all the polymers conserved to a large extent their mechanical properties during the first 90 days, except the strain at break which exhibited a strong decrease. Meanwhile, significant molecular weight decrease and weight loss are detected in the case of terpolymers. Therefore, the PTLGA terpolymers present a good potential for the development of totally bioresorbable coronary stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Martin DM, Boyle FJ. Drug-eluting stents for coronary artery disease: a review. Med Eng Phys. 2011;33(2):148–63.

    Article  Google Scholar 

  2. Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci. 2011;12(7):4250–70.

    Article  Google Scholar 

  3. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest. 1983;49(3):327–33.

    Google Scholar 

  4. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. New Eng J Med. 1994;331(8):489–95.

    Article  Google Scholar 

  5. Onuma Y, Ormiston J, Serruys PW. Bioresorbable scaffold technologies. Circ J. 2011;75(3):509–20.

    Article  Google Scholar 

  6. Garlotta D. A literature review of poly(lactic acid). J Polym Environ. 2001;9(2):63–84.

    Article  Google Scholar 

  7. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv. 2012;30(1):321–8.

    Article  Google Scholar 

  8. Venkatraman S, Poh TL, Vinalia T, Mak KH, Boey F. Collapse pressures of biodegradable stents. Biomaterials. 2003;24(12):2105–11.

    Article  Google Scholar 

  9. Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation. 2000;102(4):399–404.

    Article  Google Scholar 

  10. Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis six-month clinical and imaging outcomes. Circulation. 2010;122(22):2301–12.

    Article  Google Scholar 

  11. Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci. 2010;35(3):338–56.

    Article  Google Scholar 

  12. Simoes CL, Viana JC, Cunha AM. Mechanical properties of poly(epsilon-caprolactone) and poly(lactic acid) blends. J Appl Polym Sci. 2009;112(1):345–52.

    Article  Google Scholar 

  13. Bramfeldt H, Sarazin P, Vermette P. Characterization, degradation, and mechanical strength of poly(d, l-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D, l-lactide-co-epsilon-caprolactone). J Biomed Mater Res A. 2007;83(2):503–11.

    Article  Google Scholar 

  14. Pego AP, Van Luyn MJ, Brouwer LA, van Wachem PB, Poot AA, Grijpma DW, et al. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with d, l-lactide or epsilon-caprolactone: degradation and tissue response. J Biomed Mater Res A. 2003;67(3):1044–54.

    Article  Google Scholar 

  15. Pêgo AP, Poot AA, Grijpma DW, Feijen J. Biodegradable elastomeric scaffolds for soft tissue engineering. J Control Release. 2003;87(1–3):69–79.

    Article  Google Scholar 

  16. Pego AP, Poot AA, Grijpma DW, Feijen J. Physical properties of high molecular weight 1,3-trimethylene carbonate and d,l-lactide copolymers. J Mater Sci Mater Med. 2003;14(9):767–73.

    Article  Google Scholar 

  17. Pego AP, Vleggeert-Lankamp C, Deenen M, Lakke E, Grijpma DW, Poot AA, et al. Adhesion and growth of human schwann cells on trimethylene carbonate (co)polymers. J Biomed Mater Res A. 2003;67A(3):876–85.

    Article  Google Scholar 

  18. Zhang Z, Kuijer R, Bulstra SK, Grijpma DW, Feijen J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials. 2006;27(9):1741–8.

    Article  Google Scholar 

  19. Bat E, van Kooten TG, Feijen J, Grijpma DW. Macrophage-mediated erosion of gamma irradiated poly(trimethylene carbonate) films. Biomaterials. 2009;30(22):3652–61.

    Article  Google Scholar 

  20. Törmälä P. Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clin Mater. 1992;10(1–2):29–34.

    Article  Google Scholar 

  21. Maurus PB, Kaeding CC. Bioabsorbable implant material review. Oper Techn Sport Med. 2004;12(3):158–60.

    Article  Google Scholar 

  22. Davachi SM, Kaffashi B, Roushandeh JM, Torabinejad B. Investigating thermal degradation, crystallization and surface behavior of l-lactide, glycolide and trimethylene carbonate terpolymers used for medical applications. Mater Sci Eng C Mater Biol Appl. 2012;32(2):98–104.

    Article  Google Scholar 

  23. Davachi SM, Kaffashi B, Roushandeh JM. Synthesis and characterization of a novel terpolymer based on l-lactide, glycolide, and trimethylene carbonate for specific medical applications. Polym Adv Technol. 2012;23(3):565–73.

    Article  Google Scholar 

  24. Gebarowska K, Kasperczyk J, Dobrzynski P, Scandola M, Zini E, Li SM. NMR analysis of the chain microstructure of biodegradable terpolymers with shape memory properties. Eur Polym J. 2011;47(6):1315–27.

    Article  Google Scholar 

  25. Smola A, Dobrzynski P, Cristea M, Kasperczyk J, Sobota M, Gebarowska K, et al. Bioresorbable terpolymers based on l-lactide, glycolide and trimethylene carbonate with shape memory behaviour. Polym Chem. 2014;5(7):2442–52.

    Article  Google Scholar 

  26. Bagheri S, Mohammadi-Rovshandeh J, Hassan A. Synthesis and characterization of biodegradable random copolymers of l-lactide, glycolide and trimethylene carbonate. Iran Polym J. 2007;16(7):489–94.

    Google Scholar 

  27. Dong J, Liao L, Shi L, Tan Z, Fan Z, Li S et al. A bioresorbable cardiovascular stent prepared from l-lactide, trimethylene carbonate and glycolide terpolymers. Polym Eng Sci. 2014;54:1418–26.

  28. Dong J, Liao L, Wang G, Fan Z, Li S, Lu Z. Enzyme-catalyzed degradation behavior of l-lactide/trimethylene carbonate/glycolide terpolymers and their composites with poly(l-lactide-co-glycolide) fibers. Polym Degrad Stabil. 2014;103:26–34.

    Article  Google Scholar 

  29. Bendix D. Chemical synthesis of polylactide and its copolymers for medical applications. Polym Degrad Stabil. 1998;59(1–3):129–35.

    Article  Google Scholar 

  30. Zhu KJ, Hendren RW, Jensen K, Pitt CG. Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules. 1991;24(8):1736–40.

    Article  Google Scholar 

  31. Guo Q, Lu Z, Zhang Y, Li S, Yang J. In vivo study on the histocompatibility and degradation behavior of biodegradable poly(trimethylene carbonate-co-d, l-lactide). Acta Biochim Biophys Sin. 2011;43(6):433–40.

    Article  Google Scholar 

  32. Han YR, Jin XY, Yang J, Fan ZY, Lu ZQ, Zhang Y, et al. Totally bioresorbable composites prepared from poly(l-Lactide)-co-(trimethylene carbonate) copolymers and poly(l-lactide)-co-(glycolide) fibers as cardiovascular stent material. Polym Eng Sci. 2012;52(4):741–50.

    Article  Google Scholar 

  33. Yang J, Liu F, Yang L, Li SM. Hydrolytic and enzymatic degradation of poly(trimethylene carbonate-co-d, l-lactide) random copolymers with shape memory behavior 2.3. Eur Polym J. 2010;46(4):783–91.

    Article  Google Scholar 

  34. Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules. 2011;12(3):523–32.

    Article  Google Scholar 

  35. Gilding DK, Reed AM. Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1. Polymer. 1979;20(12):1459–64.

    Article  Google Scholar 

  36. Dobrzynski P, Kasperczyk J. Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. V. Multiblock and random copolymers of l-lactide with trimethylene carbonate obtained in copolymerizations initiated with zirconium(IV) acetylacetonate. J Polym Sci. 2006;44(10):3184–201.

    Article  Google Scholar 

  37. Hua JJ, Gebarowska K, Dobrzynski P, Kasperczyk J, Wei J, Li SM. Influence of chain microstructure on the hydrolytic degradation of copolymers from 1,3-trimethylene carbonate and l-lactide. J Polym Sci. 2009;47(15):3869–79.

    Article  Google Scholar 

  38. Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci. 2002;27(6):1123–63.

    Article  Google Scholar 

  39. Widjaja LK, Kong JF, Chattopadhyay S, Lipik VT, Liow SS, Abadie MJM, et al. Triblock copolymers of epsilon-caprolactone, l-lactide, and trimethylene carbonate: biodegradability and elastomeric behavior. J Biomed Mater Res A. 2011;99A(1):38–46.

    Article  Google Scholar 

  40. Dobrzynski P, Li S, Kasperczyk J, Bero M, Gasc F, Vert M. Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and epsilon-caprolactone. Part 1. Synthesis and characterization. Biomacromolecules. 2005;6(1):483–8.

    Article  Google Scholar 

  41. Yu L, Liu H, Xie F, Chen L, Li X. Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid. Polym Eng Sci. 2008;48(4):634–41.

    Article  Google Scholar 

  42. Franco L, Bedorin S, Puiggalí J. Comparative thermal degradation studies on glycolide/trimethylene carbonate and lactide/trimethylene carbonate copolymers. J Appl Polym Sci. 2007;104(6):3539–53.

    Article  Google Scholar 

  43. Vaisman B, Motiei M, Nyska A, Domb AJ. Biocompatibility and safety evaluation of a ricinoleic acid-based poly(ester-anhydride) copolymer after implantation in rats. J Biomed Mater Res A. 2010;92A(2):419–31.

    Google Scholar 

  44. Danmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, et al. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater. 2011;7(5):2035–46.

    Article  Google Scholar 

  45. Oberhauser JP, Hossainy S, Rapoza RJ. Design principles and performance of bioresorbable polymeric vascular scaffolds. EuroIntervention. 2009;5 Suppl F:F15–22.

  46. Shikanov A, Kumar N, Domb AJ. Biodegradable polymers: an update. Isr J Chem. 2005;45(4):393–9.

    Article  Google Scholar 

  47. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–98.

    Article  Google Scholar 

  48. MainilVarlet P, Rahm R, Gogolewski S. Long-term in vivo degradation and bone reaction to various polylactides.1. One-year results. Biomaterials. 1997;18(3):257–66.

    Article  Google Scholar 

  49. Adamus A, Wach RA, Olejnik AK, Dzierzawska J, Rosiak JM. Degradation of nerve guidance channels based on a poly(L-lactic acid) poly(trimethylene carbonate) biomaterial. Polym Degrad Stabil. 2012;97(4):532–40.

    Article  Google Scholar 

  50. Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res. 1999;48(3):342–53.

    Article  Google Scholar 

  51. You Y, Min BM, Lee SJ, Lee TS, Park WH. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J Appl Polym Sci. 2005;95(2):193–200.

    Article  Google Scholar 

  52. Vieira AC, Vieira JC, Ferra JM, Magalhaes FD, Guedes RM, Marques AT. Mechanical study of PLA-PCL fibers during in vitro degradation. J Mech Behav Biomed Mater. 2011;4(3):451–60.

    Article  Google Scholar 

  53. Tambaca J, Canic S, Kosor M, Fish RD, Paniagua D. Mechanical behavior of fully expanded commercially available endovascular coronary stents. Tex Heart I J. 2011;38(5):491–501.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (No. 51073041) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongyong Fan or Suming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Jin, X., Fan, Z. et al. In vivo degradation of copolymers prepared from l-lactide, 1,3-trimethylene carbonate and glycolide as coronary stent materials. J Mater Sci: Mater Med 26, 139 (2015). https://doi.org/10.1007/s10856-015-5384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5384-8

Keywords

Navigation