Skip to main content
Log in

Study of the structural, optical, electrical and electrochemical properties of copper oxide thin films synthesized by spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In our present study we focus on characterizing copper oxide (CuO) thin films synthesized at various substrate temperatures and to assess the electrochemical performance of the optimized sample. The spray pyrolysis method was used to fabricate CuO thin film samples, with the substrate temperatures ranging from 250 to 400 °C. The coatings underwent characterization through different analytical techniques, including X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, Raman spectroscopy, and Hall effect measurements. All the thin film samples were confirmed to have a monoclinic phase. The presence of Cu=O was confirmed by Raman spectroscopy. All the samples exhibited P type conductivity except the one synthesized at 400 °C. Galvanostatic charge–discharge studies revealed a pseudocapacitive nature for the optimized sample synthesized at 350 °C. The symmetrical charging and discharging curves imply excellent material reversibility, indicating long-term cyclic stability. The Nyquist plot exhibited a semicircle at high frequencies, representing the material’s intrinsic resistance and a linear behavior at low frequencies, depicting the ion transfer resistance. The electrode demonstrated favorable electrochemical properties and potential use of the material in supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. O. Diachenko, J. Kovac Jr., O. Dobrozhan, P. Novak, J. Kovac, J. Skiniarova, A. Opanasyuk, Coatings 11, 1392 (2021). https://doi.org/10.3390/coatings11111392

    Article  CAS  Google Scholar 

  2. Z. Yang, D. Zhang, W. Zhang, M. Chen, J. Phys. Chem. Solids 70(5), 840 (2009). https://doi.org/10.1016/j.jpcs.2009.04.004

    Article  CAS  ADS  Google Scholar 

  3. L. Zhu, G. Shao, J.K. Lu, Solid State Sci. 14(7), 857 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.04.020

    Article  CAS  ADS  Google Scholar 

  4. E. Eqbal, R. Raphael, K.J. Saji, E.I. Anila, Mater. Lett. 247, 211 (2019). https://doi.org/10.1016/j.matlet.2019.03.122

    Article  CAS  Google Scholar 

  5. S. Salam, B. Jos, R. Raphael, E.I. Anila, IOP Conf. Ser. Mater. Sci. Eng. 1070, 012011 (2021). https://doi.org/10.1088/1757-899X/1070/1/012011

    Article  CAS  Google Scholar 

  6. B. Jos, K.J. Saji, E.I. Anila, J. Mines Met. Fuels 71(1), 24 (2023)

    Google Scholar 

  7. H. Zare Asl, S.M. Rozati, Mater. Res. 21(2), e20170754 (2018). https://doi.org/10.1590/1980-5373-mr-2017-0754

    Article  CAS  Google Scholar 

  8. S. Khatami, O. Ilegbusi, L. Trakhtenberg, Mater. Sci. Appl. 06, 68 (2015). https://doi.org/10.4236/msa.2015.61009

    Article  CAS  Google Scholar 

  9. S.G. Sayyed, A.V. Shaikh, U.P. Shinde, P. Hiremath, N. Naik, J. Mater. Sci. Mater. Electron. 34, 1361 (2023). https://doi.org/10.1007/s10854-023-10738-7

    Article  CAS  Google Scholar 

  10. R.B. Chrisma, R.I. Jafri, E.I. Anila, J. Mater. Sci. 58(2), 1 (2023). https://doi.org/10.1007/s10853-023-08386-7

    Article  CAS  Google Scholar 

  11. K.P. Jithul, K.S. Samra, J. Phys. Conf. Ser. 2267, 012120 (2022). https://doi.org/10.1088/1742-6596/2267/1/012120

    Article  Google Scholar 

  12. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, J. Appl. Crystallogr. 48(2), 598 (2015). https://doi.org/10.1107/S1600576715002319

    Article  CAS  ADS  Google Scholar 

  13. V.S. Punnakkal, B. Jos, E.I. Anila, Mater. Lett. 298, 130014 (2021)

    Article  CAS  Google Scholar 

  14. L. Debbichi, M.C.M. de Lucas, J.F. Pierson, P. Krüger, J. Phy. Chem. C 116(18), 10232 (2012). https://doi.org/10.1021/jp303096m

    Article  CAS  Google Scholar 

  15. J. Chrzanowski, J.C. Irwin, Solid State Commun. 70(1), 11 (1989). https://doi.org/10.1016/0038-1098(89)90457-2

    Article  CAS  ADS  Google Scholar 

  16. M.R. Joyaa, J. Barba Ortega, A.M. Rabab, Indian J. Pure Appl. Phys. 57(4), 268 (2019)

    Google Scholar 

  17. V.K. Kaushik, Spectrochim. Acta Part B At. Spectrosc. 44(6), 581 (1989). https://doi.org/10.1016/0584-8547(89)80137-5

    Article  ADS  Google Scholar 

  18. F.M. Li et al., Thin Solid Films 520(4), 1278 (2011). https://doi.org/10.1016/j.tsf.2011.04.192

    Article  CAS  ADS  Google Scholar 

  19. P. Jiang et al., J. Chem. Phys. 138, 024704 (2013). https://doi.org/10.1063/1.4773583

    Article  CAS  PubMed  ADS  Google Scholar 

  20. R.P. Vasquez, Surf. Sci. Spectra 5, 262 (1998). https://doi.org/10.1116/1.1247882

    Article  CAS  ADS  Google Scholar 

  21. “NIST XPS Database, Selected Element Search Result.” https://srdata.nist.gov/xps/EngElmSrchQuery.aspx?Etype=PE&CSOpt=Retri_ex_dat&Elm=Na

  22. E. Eqbal, E.I. Anila, Phys. B Phys. Condens. Matter. 528, 60 (2018)

    Article  CAS  ADS  Google Scholar 

  23. T. Shrividhya, G. Ravi, Y. Hayakawa, T. Mahalingam, J. Mater. Sci. Mater. Electron. 25, 3885 (2014). https://doi.org/10.1007/s10854-014-2103-z

    Article  CAS  Google Scholar 

  24. A.S. Hassanien, A.A. Akl, Superlattices Microstruct. 89, 153 (2016). https://doi.org/10.1016/j.spmi.2015.10.044

    Article  CAS  ADS  Google Scholar 

  25. N.R. Dhineshbabu, V. Rajendran, N. Nithyavathy, R. Vetumperumal, Appl. Nanosci. 6, 933 (2016). https://doi.org/10.1007/s13204-015-0499-2

    Article  CAS  ADS  Google Scholar 

  26. Y. Du, X. Gao, X. Meng, Phys. B 560, 37 (2019). https://doi.org/10.1016/j.physb.2019.02.037

    Article  CAS  ADS  Google Scholar 

  27. D. He, S. Xing, B. Sun, H. Cai, H. Suo, C. Zhao, Electrochim. Acta 210, 639 (2016). https://doi.org/10.1016/j.electacta.2016.05.196

    Article  CAS  Google Scholar 

  28. C.R. Babu, A.V. Avani, S. Shaji, E.I. Anila, J. Solid State Electrochem. (2023). https://doi.org/10.1007/s10008-023-05744-y

    Article  Google Scholar 

  29. S. Shinde et al., J. Ind. Eng. Chem. 36, 116 (2016). https://doi.org/10.1016/j.jiec.2016.01.038

    Article  CAS  Google Scholar 

  30. Y. Zhan et al., J. Alloys Compd. 885, 161014 (2021). https://doi.org/10.1016/j.jallcom.2021.161014

    Article  CAS  Google Scholar 

  31. W. Dang, C. Dong, Z. Zhang, G. Chen, Y. Wang, H. Guan, Electrochim. Acta 217, 16 (2016). https://doi.org/10.1016/j.electacta.2016.08.142

    Article  CAS  Google Scholar 

Download references

Funding

E I Anila has received research support from CHRIST (Deemed to be University), Bangalore under seed money scheme (SMSS-2218).

Author information

Authors and Affiliations

Authors

Contributions

BJ: Conceptualization, Methodology, Investigation, Writing-original draft. CRB: Investigation, Analysis. SS: Data curation. EIA: Project administration, Supervision, Writing-review and editing.

Corresponding author

Correspondence to E. I. Anila.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jos, B., Babu, C.R., Shaji, S. et al. Study of the structural, optical, electrical and electrochemical properties of copper oxide thin films synthesized by spray pyrolysis. J Mater Sci: Mater Electron 35, 233 (2024). https://doi.org/10.1007/s10854-024-12006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12006-8

Navigation