Skip to main content

Advertisement

Log in

A review on the electrochemical behavior of graphene–transition metal oxide nanocomposites for energy storage applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrochemical energy storage devices like supercapacitors and rechargeable batteries require an improvement in their performance at the commercial level. Among them, supercapacitors are beneficial in sustainable nanotechnologies for energy conversion and storage systems and have high power rates compared to batteries. High chemical and mechanical stability, huge electrical conductivity, and high specific surface area have been beneficial for selecting graphene as a supercapacitor electrode material. The excellent properties of transition metal oxides are accountable for the application in the field of energy storage. The synergistic effects of the composites of graphene derivatives with transition metal oxides will boost the performance of the devices. Recently, several studies have been done for developing supercapacitor electrodes with these nanocomposites. This review article presents an analysis of the performance of these nanocomposites with an overview of their specific capacitance, energy density, and cycling stability for supercapacitor electrode application. A brief introduction of the theory and experimental analysis of supercapacitors is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are included in this published article.

References

  1. Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO, Osman AI, Farrell C, Al-Muhtaseb AH, Awed AS, Ashour AH, Rooney DW (2021) Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ Chem Lett 19:375–439. https://doi.org/10.1007/s10311-020-01075-w

    Article  CAS  Google Scholar 

  2. Vangari M, Pryor T, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139(2):72–79. https://doi.org/10.1061/(asce)ey.1943-7897.0000102

    Article  Google Scholar 

  3. Khan M, Tahir MN, Adil SF, Khan HU, Siddiqui MRH, Al-Warthan AA, Tremel W (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3(37):18753–18808. https://doi.org/10.1061/(asce)ey.1943-7897.0000102

    Article  CAS  Google Scholar 

  4. Nandi D, Mohan VB, Bhowmick AK (2020) Metal / metal oxide decorated graphene synthesis and application as supercapacitor: a review. J Mater Sci 55(15):6375–6400. https://doi.org/10.1007/s10853-020-04475-z

    Article  CAS  Google Scholar 

  5. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1–30. https://doi.org/10.1002/smll.201102635

    Article  CAS  Google Scholar 

  6. González A, Goikolea E, Andoni J, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 58:1189–1206. https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  7. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25:1419–1445. https://doi.org/10.1007/s11581-019-02874-0

    Article  CAS  Google Scholar 

  8. Cheng JP, Gao SQ, Zhang PP, Wang BQ, Wang XC, Liu F (2020) Influence of crystallinity of CuCo2S4 on its supercapacitive behaviour. J. Alloys Compd. 825:153984. https://doi.org/10.1016/j.jallcom.2020.153984

    Article  CAS  Google Scholar 

  9. Tiwari SK, Kumar V, Huczko A, Oraon R, Adhikari A. De, Nayak GC (2016) Magical allotropes of carbon: prospects and applications. Crit Rev Solid State Mater Sci 41(4):257–317. https://doi.org/10.1080/10408436.2015.1127206

    Article  CAS  Google Scholar 

  10. Singh V, Joung D, Zhai L, Das S (2011) Progress in Materials Science Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  11. Zhen Z, Zhu H (2018) Chapter 1. In Graphene. Elsevier Inc., Structure and Properties of Graphene. https://doi.org/10.1016/B978-0-12-812651-6.00001-X

    Book  Google Scholar 

  12. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902. https://doi.org/10.1002/smll.201002009

    Article  CAS  Google Scholar 

  13. Yang G, Li L, Lee WB, Ng MC (2018) Structure of graphene and its disorders: a review. Sci Technol Adv Mater 19(1):613–648. https://doi.org/10.1080/14686996.2018.1494493

    Article  CAS  Google Scholar 

  14. Yu W, Sisi L, Haiyan Y, Jie L (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10(26):15328–15345. https://doi.org/10.1039/d0ra01068e

    Article  CAS  Google Scholar 

  15. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb Carbon: A Review of Graphene. Chem Rev 6(3):132–145. https://doi.org/10.1021/cr900070d

    Article  CAS  Google Scholar 

  16. Bae S, Kim H, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y, Kim KS (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:1–5. https://doi.org/10.1038/nnano.2010.132

    Article  CAS  Google Scholar 

  17. Zhu BY, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  18. Novoselov KS, Fal VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200. https://doi.org/10.1038/nature11458

    Article  CAS  Google Scholar 

  19. Li F, Jiang X, Zhao J, Zhang S (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488–515. https://doi.org/10.1016/j.nanoen.2015.07.014

    Article  CAS  Google Scholar 

  20. Omanovi E, Badnjevi A, Kazlagi A, Hajlovac M (2020) Nanocomposites: a brief review. Health Technol 10:51–59

    Article  Google Scholar 

  21. Zakir S, Muhammad H, Syed I, Hussain B, Chun W, Kefayat O (2020) A review on graphene based transition metal oxide composites and its application towards supercapacitor electrodes. SN Appl Sci 2(4):1–23. https://doi.org/10.1007/s42452-020-2515-8

    Article  CAS  Google Scholar 

  22. Ji L, Meduri P, Agubra V, Xiao X, Alcoutlabi M (2016) Graphene-based nanocomposites for energy storage. Adv Energy Mater 16:1502159. https://doi.org/10.1002/aenm.201502159

    Article  CAS  Google Scholar 

  23. Nguyen Bich H, Van Nguyen H (2016) Promising applications of graphene and graphene-based nanostructures. Adv Nat Sci Nanosci Nanotechnol 7:023002. https://doi.org/10.1088/2043-6262/7/2/023002

  24. Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS (2019) A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 9:8778–8781. https://doi.org/10.1039/c8ra09577a

    Article  CAS  Google Scholar 

  25. Wei J, Zang Z, Zhang Y, Wang M, Du J, Tang X (2017) Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt. Lett. 42:911–914. https://doi.org/10.1364/ol.42.000911

    Article  CAS  Google Scholar 

  26. Pena-Pereira F, Romero V, de la Calle I, Lavilla I, Bendicho C (2021) Graphene-based nanocomposites in analytical extraction processes. TrAC - Trends Anal. Chem. 142:116303. https://doi.org/10.1016/j.trac.2021.116303

  27. Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M (2018) Supercapacitors: properties and applications. J Energy Storage 17:224–227. https://doi.org/10.1016/j.est.2018.03.012

    Article  Google Scholar 

  28. Dai M, Zhao D, Wu X (2020) Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors. Chin Chem Lett 31(9):2177–2188. https://doi.org/10.1016/j.cclet.2020.02.017

    Article  CAS  Google Scholar 

  29. Prasankumar T, Jose J, Jose S, Balakrishnan SP (2016) Pseudocapacitors Intech 11

  30. Rauda IE, Augustyn V, Dunn B, Tolbert SH (2013) Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Acc Chem Res 46:1113–1124. https://doi.org/10.1021/ar300167h

    Article  CAS  Google Scholar 

  31. Jiang Y, Liu J (2019) Definitions of pseudocapacitive materials: a brief review. Energy and Environ Mater 2(1):30–37. https://doi.org/10.1002/eem2.12028

    Article  Google Scholar 

  32. Lubimtsev AA, Kent PRC, Sumpter BG, Ganesh P (2013) Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals. J Mater Chem A 1(47):14951–14956. https://doi.org/10.1039/c3ta13316h

    Article  CAS  Google Scholar 

  33. Rountree KJ, Mccarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2017) A practical beginner’s guide to cyclic voltammetry. J Chem Edu 95(2):197–206. https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  34. Forouzandeh P, Kumaravel V, Pillai SC (2020) Electrode materials for supercapacitors: a review of recent advances. Catalysts 10:1–73. https://doi.org/10.3390/catal10090969

    Article  CAS  Google Scholar 

  35. Wu C, Zhang Z, Chen Z, Jiang Z, Li H, Cao H, Liu Y, Zhu Y, Fang Z, Yu X (2021) Rational design of novel ultra-small amorphous Fe2O3 nanodots / graphene heterostructures for all-solid-state asymmetric super- capacitors. Nano Res 14(4):953–960

    Article  CAS  Google Scholar 

  36. Yang Z, Chen C, Chang H (2011) Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J Power Sources 196(18):7874–7877. https://doi.org/10.1016/j.jpowsour.2011.03.072

    Article  CAS  Google Scholar 

  37. Karthikeyan K, Aravindan V, Lee SB, Jang IC, Lim HH, Park GJ, Yoshio M, Lee YS (2010) A novel asymmetric hybrid supercapacitor based on Li2FeSiO4 and activated carbon electrodes. J Alloy Compd 504(1):224–227. https://doi.org/10.1016/j.jallcom.2010.05.097

    Article  CAS  Google Scholar 

  38. Pham T, Nguyen T, Nguyen TTT, Dinh TMT, Vo TKA, Anh NS, Tran LD (2020) Facile synthesis and characterization of the reduced graphene oxide/co3o4 nanocomposite for capacitive application. Commun. Phys. 30:409–416. https://doi.org/10.15625/0868-3166/30/4/14964

    Article  Google Scholar 

  39. Sethi M, Shenoy US, Bhat DK (2021) Simple solvothermal synthesis of porous graphene-NiO nanocomposites with high cyclic stability for supercapacitor application. J. Alloys Compd. 854:157190. https://doi.org/10.1016/j.jallcom.2020.157190

  40. Raj S, Srivastava SK, Kar P, Roy P (2019) In situ growth of Co3O4 nanoflakes on reduced graphene oxide-wrapped Ni-foam as high performance asymmetric supercapacitor. Electrochim Acta 302:327–337. https://doi.org/10.1016/j.electacta.2019.02.010

    Article  CAS  Google Scholar 

  41. Numan A, Duraisamy N, Saiha Omar F, Mahipal YK, Ramesh K, Ramesh S (2016) Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application. RSC Adv. 6:34894–34902. https://doi.org/10.1039/c6ra00160b

    Article  CAS  Google Scholar 

  42. Dao V, Duc N, Hung N, Viet D (2019) A facile synthesis of ruthenium/reduced graphene oxide nanocomposite for effective electrochemical applications. Sol Energy 191:420–426. https://doi.org/10.1016/j.solener.2019.09.016

    Article  CAS  Google Scholar 

  43. F. A. Chaves and D. Jiménez (2018) Three-dimensional reduced-graphene/MnO2 prepared by plasma treatment as high-performance supercapacitor electrodes. Nanotechnology. 29

  44. Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA (2010) Ternary self-assembly of ordered metal oxide graphene nanocomposites for electrochemical energy storage. ACS Nano. 4(3):1587–1595

    Article  CAS  Google Scholar 

  45. Xu JM, Cheng JP (2016) The advances of Co3O4 as gas sensing materials: a review. J Alloy Compd 686:753–768

    Article  CAS  Google Scholar 

  46. Kupfer B, Majhi K, Keller DA, Bouhadana Y, Rühle S, Barad HN, Anderson AY, Zaban A (2015) Thin film Co3O4/ TiO2 heterojunction solar cells. Adv Energy Mater 5:1401007. https://doi.org/10.1002/aenm.201401007

  47. Wang C, Shi P, Cai X, Xu Q, Zhou X, Zhou X, Yang D, Fan J, Min Y, Ge H, Yao W (2016) Synergistic effect of Co3O4 nanoparticles and graphene as catalysts for peroxymonosulfate-based orange ii degradation with high oxidant utilization efficiency. J Phys Chem C 120:336–344. https://doi.org/10.1021/acs.jpcc.5b10032

    Article  CAS  Google Scholar 

  48. Co H, Mno OP (2014) Hierarchical Co3O4@PPy@MnO2 core-shell- shell nanowire arrays for enhanced electro- chemical energy storage. Nano Energy 7:42–51. https://doi.org/10.1016/j.nanoen.2014.04.014

    Article  CAS  Google Scholar 

  49. Sengottaiyan C, Jayavel R, Bairi P, Shrestha RG, Ariga K (2017) Cobalt oxide/reduced graphene oxide composite with enhanced electrochemical supercapacitance performance. Bull Chem Soc Japan 8:955–962. https://doi.org/10.1246/bcsj.20170092

    Article  CAS  Google Scholar 

  50. Guyon C, Barkallah A, Rousseau F, Giffard K, Morvan D, Tatoulian M (2011) Surface & coatings technology deposition of cobalt oxide thin fi lms by plasma-enhanced chemical vapour deposition ( PECVD ) for catalytic applications. Surf Coat Technol 206(7):1673–1679. https://doi.org/10.1016/j.surfcoat.2011.09.060

    Article  CAS  Google Scholar 

  51. Li Y, Li X, Wang Z, Guo H, Li T (2017) Distinct impact of cobalt salt type on the morphology, microstructure, and electrochemical properties of Co3O4 synthesized by ultrasonic spray pyrolysis. J Alloy Compd 696:836–843. https://doi.org/10.1016/j.jallcom.2016.12.038

    Article  CAS  Google Scholar 

  52. Ibrahim EMM, Abdel-rahman LH, Abu-dief AM, Elshafaie A, Kamel S, Ahmed AM (2018) Electric, thermoelectric and magnetic characterization of γ –Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schi ff base complexes. Mater Res Bull 99:103–108. https://doi.org/10.1016/j.materresbull.2017.11.002

    Article  CAS  Google Scholar 

  53. Liao Q, Li N, Jin S, Yang G, Wang C (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano. 9(5):5310–5317

    Article  CAS  Google Scholar 

  54. Yun M, Ma Y, Cai Z, Ji H, Han J, Wang M, Tong Z, Xiao L, Jia S, Chen X (2021) Holey graphene interpenetrating networks for boosting high-capacitive Co3O4 electrodes via an electrophoretic deposition process. Ceram Int 47(19):27210–27216. https://doi.org/10.1016/j.ceramint.2021.06.143

    Article  CAS  Google Scholar 

  55. Yan AH, Bai J, Liao M, He Y, Liu Q, Yan H, Bai J, Liao M, He Y, Liu Q, Liu J, Zhang H (2016) One-step synthesis of Co3O4/graphene aerogels and their all- solid-state asymmetric supercapacitor. Eur J Inorg Chem 8:1143–1152. https://doi.org/10.1002/ejic.201601202

    Article  CAS  Google Scholar 

  56. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3213

    Article  CAS  Google Scholar 

  57. Jiang Y, He C, Qiu S, Zhang J, Wang X (2020) Scalable mechanochemical coupling of homogeneous Co3O4 nanocrystals onto in-situ exfoliated graphene sheets for asymmetric supercapacitors. Chem Eng J 397:125503. https://doi.org/10.1016/j.cej.2020.125503

  58. Sagadevan S, Marlinda AR, Rafie M, Umar A, Fouad H, Alothman OY, Khaled U, Akhtar MS, Shahid MM (2020) Reduced graphene / nanostructured cobalt oxide nanocomposite for enhanced electrochemical performance of supercapacitor applications. J Colloid Interface Sci 558:68–77. https://doi.org/10.1016/j.jcis.2019.09.081

    Article  CAS  Google Scholar 

  59. Zhou Y, Zou X, Zhao Z, Xiang B, Zhang Y (2018) CoO/rGO composite prepared by a facile direct-flame approach for high- power supercapacitors. Ceram Int 44(14):16900–16907. https://doi.org/10.1016/j.ceramint.2018.06.128

    Article  CAS  Google Scholar 

  60. Singu BS, Yoon KR (2019) Exfoliated graphene-manganese oxide nanocomposite electrode materials for supercapacitor. J Alloy Compd 770:1189–1199. https://doi.org/10.1016/j.jallcom.2018.08.145

    Article  CAS  Google Scholar 

  61. Dang MN, Nguyen TH, Nguyen TV, Thu TV, Le H (2020) One-pot synthesis of manganese oxide/graphene composites via a plasma-enhanced electrochemical exfoliation process for supercapacitors. Nanotechnology 31

  62. Jadhav S, Kalubarme RS, Terashima C, Kale BB (2018) Manganese dioxide/reduced graphene oxide composite an electrode material for high-performance solid state supercapacitor. Electrochimica Acta. 299:34–44

    Article  Google Scholar 

  63. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. AC Nano 4(5):2822–2830. https://doi.org/10.1021/nn901311t

    Article  CAS  Google Scholar 

  64. Zhu ZY (2018) Graphene Oxide/MnO2 Composites synthesized by “ quenching ” for supercapacitors with high capacitance. Manuf Eng Process VII 278:121–129. https://doi.org/10.4028/www.scientific.net/SSP.278.121

    Article  Google Scholar 

  65. Sun H, Gu H, Chen Y (2018) Preparation and electrochemical properties of graphene/MnO2 nanocomposites for supercapacitors. Key Eng Mater 768:102–108. https://doi.org/10.4028/www.scientific.net/KEM.768.102

    Article  Google Scholar 

  66. Zhang Q, Wu X, Zhang Q, Yang F, Dong H, Sui J, Dong L (2019) One-step hydrothermal synthesis of MnO2/graphene composite for electrochemical energy storage. J Electroanal Chem 837:108–115. https://doi.org/10.1016/j.jelechem.2019.02.031

    Article  CAS  Google Scholar 

  67. Majumdar D, Maiyalagan T, Jiang Z (2019) Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6(17):4343–4372. https://doi.org/10.1002/celc.201900668

    Article  CAS  Google Scholar 

  68. Hwang JY, El-kady MF, Wang Y, Wang L (2015) Direct preparation and processing of graphene/RuO2 nanocomposite direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18:57–70. https://doi.org/10.1016/j.nanoen.2015.09.009

    Article  CAS  Google Scholar 

  69. Yang F, Zhang L, Zuzuarregui A, Gregorczyk K, Li L, Beltran M, Tollan C, Brede J, Rogero C, Chuvilin A, Knez M (2015) Functionalization of defect sites in graphene with RuO2 for high capacitive performance. Appl Mater Interfaces 7(37):20513–20519. https://doi.org/10.1021/acsami.5b04704

    Article  CAS  Google Scholar 

  70. Kumar KY, Archana S, Namitha R, Prasanna BP, Sharma SC, Raghu MS (2018) Ruthenium oxide nanostring clusters anchored Graphene oxide nanocomposites for high-performance supercapacitors application. Mater Res Bull 107:347–354. https://doi.org/10.1016/j.materresbull.2018.08.011

    Article  CAS  Google Scholar 

  71. Huang G, Li C, Sun X, Bai J (2017) Fabrication of vanadium oxide, with different valences of vanadium, -embedded carbon fibers and their electrochemical performance for supercapacitor. New J Chem 41:8977–8984. https://doi.org/10.1039/c7nj01482a

    Article  CAS  Google Scholar 

  72. Lee S, Park Y, Lam D. Van, Kim J, Lee K (2020) Effects of annealing on electrochemical performance in graphene / V2O5 supercapacitor. Appl Surface Sci 512:145626. https://doi.org/10.1016/j.apsusc.2020.145626

  73. Pandey GP, Liu T, Brown JE, Yang Y (2016) Mesoporous hybrids of reduced graphene oxide and vanadium pentoxide for enhanced performance in lithium-ion batteries and electrochemical capacitors mesoporous hybrids of reduced graphene oxide and vanadium pentoxide for enhanced performance in lithium-io. Appl Mater Interfaces 8(14):9200–9210. https://doi.org/10.1021/acsami.6b02372

    Article  CAS  Google Scholar 

  74. Lee M, Balasingam SK, Jeong HY, Hong WG, Lee H, Kim BH, Jun Y (2015) One-step hydrothermal synthesis of enhanced electrochemical energy storage. Sci Report 5(1):1–8. https://doi.org/10.1038/srep08151

    Article  CAS  Google Scholar 

  75. Li Z, Zhang H, Liu Q, Liu Y, Stanciu L, Xie J (2014) Hierarchical nanocomposites of vanadium oxide thin film anchored on graphene as high-performance cathodes in Li-ion batteries. ACS Appl Mater Interfaces 6(21):18894–18900

    Article  CAS  Google Scholar 

  76. Li G, Wang X, Hassan FM, Li M, Batmaz R, Xiao X (2015) Vanadium pentoxide nanorods anchored to and wrapped with graphene nanosheets for high-power asymmetric supercapacitors. Chemelectrochem 2(9):1264–1269. https://doi.org/10.1002/celc.201500057

    Article  CAS  Google Scholar 

  77. Nagaraju DH, Wang Q, Beaujuge P, Alshareef HN (2014) Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors. J Mater Chem A 2(40):17146–17152. https://doi.org/10.1039/c4ta03731f

    Article  CAS  Google Scholar 

  78. Kim S, Lee J, Ahn H, Song H, Jang J (2013) Facile route to an efficient NiO supercapacitor with a three- dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5(5):1596–1603

    Article  CAS  Google Scholar 

  79. Trung NB, Tam TV, Dang DK, Babu KF, Kim EJ, Kim J (2015) Facile synthesis of three-dimensional graphene/nickel oxide nanoparticles composites for high performance supercapacitor electrodes. Chem Eng J 264:603–609. https://doi.org/10.1016/j.cej.2014.11.140

    Article  CAS  Google Scholar 

  80. Zhang Y, Shen Y, Xie X, Du W, Kang L, Wang Y, Sun X, Li Z, Wang B (2020) One-step synthesis of the reduced graphene oxide @ NiO composites for supercapacitor electrodes by electrode-assisted plasma electrolysis. Mater Design 196:109111. https://doi.org/10.1016/j.matdes.2020.109111

  81. Chen W, Gui D, Liu J (2016) Nickel oxide / graphene aerogel nanocomposite as a supercapacitor electrode material with extremely wide working potential window. Electrochim Acta 222:1424–1429. https://doi.org/10.1016/j.electacta.2016.11.120

    Article  CAS  Google Scholar 

  82. Dam DT, Wang X, Lee J (2014) Graphene/NiO nanowires: controllable one-pot synthesis and enhanced pseudocapacitive behavior. Appl Mater Interfaces. 6(11):8246–8256

    Article  CAS  Google Scholar 

  83. Ahmadi M, Younesi R, Guinel MJ (2014) Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure. J Mater Res 29:1–11

    Article  CAS  Google Scholar 

  84. Jia J, Liu X, Mi R, Liu N, Xiong Z, Yuan L, Wang C, Sheng G, Cao L, Zhou X, Liu X (2018) Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors. J Mater Chem A: Mater Energy Sustain 6:15330–15339. https://doi.org/10.1039/C8TA05292A

    Article  CAS  Google Scholar 

  85. Kalaiarasi S, Kavitha M, Karpagavinayagam P, Vedhi C, Muthuchudarkodi RR (2020) Tungsten oxide decorated graphene oxide nanocomposite: chemical synthesis, characterization and application in super capacitors. Mater Today Proc 48:282–289. https://doi.org/10.1016/j.matpr.2020.07.207

    Article  CAS  Google Scholar 

  86. Pieretti JC, Trevisan TB, De Moraes MMM, De Souza EA, Domingues SH (2019) High capacitive rGO/WO3 nanocomposite: the simplest and fastest route of preparing it. Appl Nanosci 10:165–175. https://doi.org/10.1007/s13204-019-01089-z

    Article  CAS  Google Scholar 

  87. Nayak AK, Das AK, Pradhan D (2017) High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO3 nanowires nanocomposite. ACS Sustain Chem Eng 5(11):10128–10138. https://doi.org/10.1021/acssuschemeng.7b02135

    Article  CAS  Google Scholar 

  88. Chaitoglou S, Amade R, Bertran E (2017) Evaluation of graphene/WO3 and graphene/CeOx Structures as electrodes for supercapacitor applications. Nanoscale Res Lett 12:1–9. https://doi.org/10.1186/s11671-017-2385-1

    Article  CAS  Google Scholar 

  89. Yang X, Ding H, Zhang D, Yan X, Lu C, Qin J (2011) Hydrothermal synthesis of MoO 3 nanobelt-graphene composites. Crystal Res Technol 1201(11):1195–1201. https://doi.org/10.1002/crat.201100302

    Article  CAS  Google Scholar 

  90. Shaheen W, Warsi MF, Shahid M, Khan MA, Asghar M, Ali Z, Sarfraz M, Anwar H, Muhammad Nadeem IS (2016) Carbon coated MoO3 nanowires/graphene oxide ternary nanocomposite for high-performance supercapacitors. Electrochim Acta 219:330–338. https://doi.org/10.1016/j.electacta.2016.09.069

    Article  CAS  Google Scholar 

  91. Reddy BJ, Simon PVA (2019) Microwave synthesis of ­ MoO3 -reduced graphene oxide nanocomposite for high performance asymmetric supercapacitors. J Mater Sci: Mater Electron 30(4):3618–3628. https://doi.org/10.1007/s10854-018-00641-x

    Article  CAS  Google Scholar 

  92. Prakash NG, Lakshmi MDA, Hussen N, Srikanth MVVSS (2019) Improved electrochemical performance of rGO– wrapped – MoO3 nanocomposite for supercapacitors. Appl Phys A 125(8):1–10. https://doi.org/10.1007/s00339-019-2779-2

    Article  CAS  Google Scholar 

  93. Pathak A, Gangan AS, Ratha S, Chakraborty B, Rout CS (2017) Enhanced pseudocapacitance of MoO3––reduced graphene oxide hybrids with insight from density functional theory investigations. J Phys Chem C 35:18992–19001. https://doi.org/10.1021/acs.jpcc.7b04478

    Article  CAS  Google Scholar 

  94. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663. https://doi.org/10.1021/cr900356p

    Article  CAS  Google Scholar 

  95. Abasali Z, Nemati A, Khachatourian AM, Golmohammad M (2020) The effect of pre-reduction of graphene oxide on the electrochemical performance of rGO-TiO2 nanocomposite. Iran J Mater Sci Eng 17(4):55–61. https://doi.org/10.22068/ijmse.17.4

    Article  Google Scholar 

  96. Jiang H, Li S, Yang K, Zhang Z, Li S, Luo N, Liu Q, Wei R (2018) Three-dimensional hierarchical graphene/TiO2 composite as high-performance electrode for supercapacitor. J Alloy Compd 746:670–676. https://doi.org/10.1016/j.jallcom.2018.02.210

    Article  CAS  Google Scholar 

  97. Nagaraju P, Alsalme A, Alswieleh A, Jayavel R (2018) Facile in-situ microwave irradiation synthesis of TiO2/graphene nanocomposite for high-performance supercapacitor applications. J Electroanal Chem 808:90–100. https://doi.org/10.1016/j.jelechem.2017.11.068

    Article  CAS  Google Scholar 

  98. Pu NW, Chen CY, Qiu HX, Liu YM, Song CH, Lin MH, Ger MD (2018) Hydrothermal synthesis of N-doped graphene/Fe2O3 nanocomposite for supercapacitors. Int J Electrochem Sci 13(7):6812–6823. https://doi.org/10.20964/2018.07.16

    Article  CAS  Google Scholar 

  99. Khedekar VV, Zaeem SM, Das S (2018) Graphene-metal oxide nanocomposites for supercapacitors: a perspective review. Adv Mater Lett 9(1):2–19. https://doi.org/10.5185/amlett.2018.1932

    Article  CAS  Google Scholar 

  100. Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L (2013) Electrochimica acta synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochim Acta 114:674–680. https://doi.org/10.1016/j.electacta.2013.10.068

    Article  CAS  Google Scholar 

  101. Liu L, Lang J, Zhang P, Hu B, Yan X (2016) Facile synthesis of Fe2O3 nano-dots @ nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. Appl Mater Interfaces 8(14):9335–9344. https://doi.org/10.1021/acsami.6b00225

    Article  CAS  Google Scholar 

  102. Huang X, Dou S, Wu J, Wang S (2014) One-pot synthesis of fe2o3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J Phys Chem C 118(31):17231–17239

    Article  Google Scholar 

  103. Yan Y, Kumar Y, Hoon H (2011) Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J Mater Chem A 21(10):3422–3427. https://doi.org/10.1039/c0jm03175e

    Article  CAS  Google Scholar 

  104. Gholipour-ranjbar H, Reza M, Norouzi P (2016) Synthesis of cross-linked graphene aerogel/Fe2O3 nanocomposite with enhanced supercapacitive performance. Ceram Int 42:1–8. https://doi.org/10.1016/j.ceramint.2016.04.140

    Article  CAS  Google Scholar 

  105. Viswanathan A, Shetty AN (2020) Reduced graphene oxide/vanadium pentoxide nanocomposite as electrode material for highly rate capable and durable supercapacitors. J Energy Storage 27:101103. https://doi.org/10.1016/j.est.2019.101103

  106. Foo CY, Sumboja A, Jia D, Tan H, Wang J, Lee PS (2014) Flexible and highly scalable V2O5 -rGO electrodes in an organic electrolyte for supercapacitor devices. Adv Energy Mater 4:1–7. https://doi.org/10.1002/aenm.201400236

    Article  CAS  Google Scholar 

  107. Ahirrao DJ, Mohanapriya K, Jha N (2018) V2O5 nanowires-graphene composite as an outstanding electrode material for high electrochemical performance and long-cycle-life supercapacitor. Mater Res Bull 108:73–82. https://doi.org/10.1016/j.materresbull.2018.08.028

    Article  CAS  Google Scholar 

  108. Vimuna VM, Athira AR, Dinesh Babu KV, Xavier TS (2020) Simultaneous stirring and microwave assisted synthesis of nanoflakes MnO2/rGO composite electrode material for symmetric supercapacitor with enhanced electrochemical performance. Diam Relat Mater 110:108129. https://doi.org/10.1016/j.diamond.2020.108129

  109. Yang YJ, Zeng Y, Liu B, Long J, Li Y, Wen N (2016) Graphene/MnO2 composite prepared by a simple method for high performance supercapacitor. Mater Res Innov 20(2):92–98. https://doi.org/10.1179/1433075X15Y.0000000021

    Article  CAS  Google Scholar 

  110. Qiu S, Li R, Huang Z, Huang Z, Pong C, He C (2019) Scalable sonochemical synthesis of petal-like MnO2/graphene hierarchical composites for high-performance supercapacitors. Compos B 161:37–43. https://doi.org/10.1016/j.compositesb.2018.10.055

    Article  CAS  Google Scholar 

  111. Ezeigwe ER, Tan MTT, Khiew S, Siong CW (2015) Solvothermal synthesis of graphene-MnO2 nano- composites and their electrochemical behavior. Ceram Int 41(9):11418–11427. https://doi.org/10.1016/j.ceramint.2015.05.105

    Article  CAS  Google Scholar 

  112. Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/mno2 nanostructured electrodes by conductive wrapping. Nano Lett. 11:4438–4442

    Article  CAS  Google Scholar 

  113. Chen L, Yin H, Zhang Y, Xie H (2020) Facile synthesis of modified MnO2/reduced graphene oxide nanocomposites and their application in supercapacitors. Nano 15(8):2050099. https://doi.org/10.1142/S179329202050099X

  114. Zhang G, Ren L, Deng L, Wang J, Kang L (2014) Graphene – MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor. Mater Res Bull 49:577–583. https://doi.org/10.1016/j.materresbull.2013.09.036

    Article  CAS  Google Scholar 

  115. Chan PY, Majid SR (2013) RGO-wrapped MnO2 composite electrode for supercapacitor application. Solid State Ionics 262:3–6. https://doi.org/10.1016/j.ssi.2013.10.005

    Article  CAS  Google Scholar 

  116. Qiu D, Ma X, Zhang J, Zhao B, Lin Z (2018) In situ synthesis of mesoporous Co3O4 nanorods anchored on reduced graphene oxide nanosheets as supercapacitor electrodes. Chem Phys Lett 710:188–192

    Article  CAS  Google Scholar 

  117. Obodo RM, Nwanya AC, Ekwealor ABC, Ahmad I, Zhao T, Osuji RU, Maaza M, Ezema FI (2019) Influence of pH and annealing on the optical and electrochemical properties of Cobalt (III) Oxide (Co3O4) thin films. Surfaces Interfaces 16:114–119. https://doi.org/10.1016/j.surfin.2019.05.006

  118. Ujjain SK, Singh G, Sharma RK (2015) Co3O4 @ reduced graphene oxide nanoribbon for high performance asymmetric supercapacitor. Elsevier 169:276–282. https://doi.org/10.1016/j.electacta.2015.03.141

    Article  CAS  Google Scholar 

  119. Wang HJ, Zhou D, Peng F, Yu H (2013) Facile synthesis and performance of reduced graphene oxide/cobalt oxide composite for supercapacitor. Adv Mater Res 785:779–782. https://doi.org/10.4028/www.scientific.net/AMR.785-786.779

    Article  CAS  Google Scholar 

  120. He G, Li J, Chen H, Shi J, Sun X, Chen S, Wang X (2012) Hydrothermal preparation of Co3O4@ graphene nanocomposite for supercapacitor with enhanced capacitive performance. Mater Lett 82:61–63. https://doi.org/10.1016/j.matlet.2012.05.048

    Article  CAS  Google Scholar 

  121. Ho MY, Khiew PS, Isa D, Chiu WS, Chia CH (2017) Solvothermal synthesis of molybdenum oxide on liquid-phase exfoliated graphene composite electrodes for aqueous supercapacitor application. J Mater Sci Mater Electron 28(9):6907–6918. https://doi.org/10.1007/s10854-017-6391-y

    Article  CAS  Google Scholar 

  122. Zhou J, Song J, Li H, Feng X, Huang Z, Chen S, Ma Y, Wang L, Yan X (2015) The synthesis of shape-controlled α-MoO3 graphene nanocomposites for high performance supercapacitors. New J Chem 39(11):8780–8786. https://doi.org/10.1039/C5NJ01722J

    Article  CAS  Google Scholar 

  123. Zhou K, Zhou W, Liu X, Sang Y (2015) Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12:510–520. https://doi.org/10.1016/j.nanoen.2015.01.017

    Article  CAS  Google Scholar 

  124. Bhattacharya S, Dinda D (2015) Role of trap states on storage capacity in a graphene/MoO3 2D electrode material. J Phys D Appl Phys 48:145303. https://doi.org/10.1088/0022-3727/48/14/145303

  125. Li W, Bu Y, Jin H, Wang J, Zhang W, Wang S, Wang J (2013) The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy Fuels 27(10):6304–6310. https://doi.org/10.1021/ef401190b

    Article  CAS  Google Scholar 

  126. Zhu YG, Cao GS, Sun CY, Xie J, Liu SY, Zhu TJ, Zhao XB, Yang HY (2013) Design and synthesis of NiO nanoflakes/graphene nanocomposite as high performance electrodes of pseudocapacitor. RSC Adv 3(42):19409–19415. https://doi.org/10.1039/c3ra42091d

    Article  CAS  Google Scholar 

  127. Jiang Y, Chen D, Song J, Jiao Z, Ma Q, Zhang H, Cheng L, Zhao B, Chu Y (2013) A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors. Electrochim Acta 91:173–178. https://doi.org/10.1039/c3ra42091d

    Article  CAS  Google Scholar 

  128. Chem JM, Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z, Zhang H, Jiang Y (2011) Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Mater Chem 21:18792–18798. https://doi.org/10.1016/j.electacta.2012.12.032

    Article  CAS  Google Scholar 

  129. Lamiel C, Nguyen VH, Tuma D, Shim J (2016) Non-aqueous synthesis of ultrasmall NiO nanoparticle-intercalated graphene composite as active electrode material for supercapacitors. Mater Res Bull 21(46):18792–18798. https://doi.org/10.1039/c1jm13016a

    Article  CAS  Google Scholar 

  130. Zhu S, Zou X, Zhou Y, Zeng Y, Long Y, Yuan Z, Wu Q, Li M, Wang Y, Xiang B (2019) Hydrothermal synthesis of graphene-encapsulated 2D circular nanoplates of α-Fe2O3 towards enhanced electrochemical performance for supercapacitor. In Journal of Alloys and Compounds 775:63–71. https://doi.org/10.1016/j.materresbull.2016.06.005

    Article  CAS  Google Scholar 

  131. Bhujel R, Rai S, Deka U, Swain BP (2019) Electrochemical, bonding network and electrical properties of reduced graphene oxide-Fe2O3 nanocomposite for supercapacitor electrodes applications. J Alloy Compd 792:250–259. https://doi.org/10.1016/j.jallcom.2018.10.085

    Article  CAS  Google Scholar 

  132. Bu IYY, Huang R (2017) Fabrication of CuO-decorated reduced graphene oxide nanosheets for supercapacitor applications. Ceram Int 43(1):45–50. https://doi.org/10.1016/j.ceramint.2016.08.136

    Article  CAS  Google Scholar 

  133. Sharavath V, Sarkar S, Ghosh S (2018) One-pot hydrothermal synthesis of TiO2/graphene nanocomposite with simultaneous nitrogen-doping for energy storage application. J Electroanal Chem 829:208–216. https://doi.org/10.1016/j.jelechem.2018.09.056

    Article  CAS  Google Scholar 

  134. Ates M, Bayrak Y, Yoruk O, Caliskan S (2017) Reduced graphene oxide/titanium oxide nanocomposite synthesis via microwave-assisted method and supercapacitor behaviors. J Alloy Compd 728:541–551. https://doi.org/10.1016/j.jallcom.2017.08.298

    Article  CAS  Google Scholar 

  135. Velmurugan V, Srinivasarao U, Ramachandran R, Saranya M, Santhosh C, Grace AN (2016) Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Mater Res Bull 84:145–151. https://doi.org/10.1016/j.materresbull.2016.07.015

    Article  CAS  Google Scholar 

  136. Murugan M, Kumar RM, Alsalme A, Alghamdi A, Jayavel R (2016) Facile hydrothermal preparation of niobium pentaoxide decorated reduced graphene oxide nanocomposites for supercapacitor applications. Chem Phys Lett 650:35–40. https://doi.org/10.1016/j.materresbull.2016.07.015

    Article  CAS  Google Scholar 

  137. Ojha V, Kato K, Kabbani MA, Babu G, Ajayan PM (2019) Nb2O5/reduced graphene oxide nanocomposite anode for high power hybrid supercapacitor applications. Chem Select 4(3):1098–1102. https://doi.org/10.1016/j.cplett.2016.02.059

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RBC contributed to conceptualization, writing–original draft, and editing and review of literature. RIJ performed reviewing and validating the content. EIA performed reviewing, supervision, editing and validating the content.

Corresponding author

Correspondence to E. I. Anila.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest regarding the publication of this paper toward any individual or organization.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chrisma, R.B., Jafri, R.I. & Anila, E.I. A review on the electrochemical behavior of graphene–transition metal oxide nanocomposites for energy storage applications. J Mater Sci 58, 6124–6150 (2023). https://doi.org/10.1007/s10853-023-08386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08386-7

Navigation