Skip to main content
Log in

Thermoelectric properties of polycrystalline SnxFeTe2 prepared by atmospheric pressure solid-state reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As a transition metal dischalcogenide, FeTe2 has become one of the most widely studied materials due to its abundant electrical, magnetic, and optical properties, and has considerable potential in various technical applications. In this experiment, the thermoelectric properties of Sn doping alloy compound FeTe2 are studied by high-temperature solid-state reaction method. Due to the excessive doping of Sn, the second phase SnTe is introduced into the sample, forming a coexistence structure of FeTe2 and SnTe, which greatly reduces the electrical resistivity of the material. The Seebeck coefficient of the sample reaches 78.79 µV/K under the conditions of 823 K and Sn doping of 0.05. When the synthesis temperature is 823 K and the Sn doping concentration is 0.9, the minimum electrical resistivity obtained is 0.59 mΩ cm, which is only about 8% of the electrical resistivity of pure FeTe2 material. The ZT value of sample Sn0.9FeTe2 reaches a maximum of 2.11 × 10−2 when the test temperature is 573.5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. Bai, Y. Ji, Y. Li, B. Qin, Effect of forming pressure on thermoelectric properties of CoSb3-based skutterudite prepared by solid-state reaction. Solid State Sci. 132, 106999 (2022)

    Article  CAS  Google Scholar 

  2. A.U. Khan, K. Kobayashi, D.M. Tang, Y. Yamauchi, K. Hasegawa, M. Mitome, Y. Xue, B. Jiang, K. Tsuchiya, D. Golberg, Y. Bando, T. Mori, Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy. 31, 152–159 (2017)

    Article  CAS  Google Scholar 

  3. D.H. Kim, H.Y. Hong, J.K. Lee, S.D. Park, K. Park, Crystal structure and thermoelectric transport properties of Cu –deficient BiCuSeO oxyselenides. J. Mater. Res. Technol. 9, 16202–16213 (2020)

    Article  CAS  Google Scholar 

  4. X.L. Cao, W. Cai, H.D. Deng, R.L. Gao, C.L. Fu, F.S. Pan, Preparation and thermoelectric properties of Pb1–xFex Te alloys doped with iodine. J. Electron. Mater. 46, 2645–2651 (2017)

    Article  CAS  Google Scholar 

  5. C.J. Kang, G. Kotliar, Study for material analogs of FeSb2: material design for thermoelectric materials. Phys. Rev. Mater. 2, 034604 (2018)

    Article  CAS  Google Scholar 

  6. D. An, S. Chen, Z. Lu, R. Li, W. Chen, W. Fan, W. Wang, Y. Wu, Low thermal conductivity and optimized thermoelectric properties of p-Type Te–Sb2Se3: synergistic effect of doping and defect Engineering. ACS Appl. Mater. Interfaces 11, 27788–27797 (2019)

    Article  CAS  Google Scholar 

  7. B. Liao, S. Lee, K. Esfarjani, G. Chen, First-principles study of thermal transport in FeSb2. Phys. Rev. B 89, 035108 (2014)

    Article  Google Scholar 

  8. Y. Bin An, S.J. Park, O. Park, S.W. Lee, S. Kim, Electronic, thermal, and thermoelectric properties of Ni-doped FeTe2 polycrystalline alloys. Electron. Mater. Lett. 19, 260–266 (2023)

    Article  Google Scholar 

  9. O. Park, S.W. Lee, S.J. Park, S. Kim, Phase formation behavior and thermoelectric transport properties of S-doped FeSe2 – xSx polycrystalline alloys. Micromachines (Basel) 13, 2066 (2022)

    Article  Google Scholar 

  10. V.K. Gudelli, V. Kanchana, G. Vaitheeswaran, M.C. Valsakumar, S.D. Mahanti, Thermoelectric properties of marcasite and pyrite FeX2 (X = Se, Te): a first principle study. RSC Adv. 4, 9424 (2014)

    Article  CAS  Google Scholar 

  11. Z. Fu, J.L. Jiang, S.T. Dong, M.C. Yu, L. Zhao, L. Wang, S.H. Yao, Effects of Zr substitution on structure and thermoelectric properties of Bi2O2Se. J. Mater. Res. Technol. 21, 640–647 (2022)

    Article  CAS  Google Scholar 

  12. H.Y. Hong, D.H. Kim, S.O. Won, J.K. Lee, S.D. Park, S.M. Choi, S.H. Bae, K. Park, Crystal structure and thermoelectric performance of p–type Bi0.86Ba0.14CuSeO/Cu2–Se composites. J. Mater. Res. Technol. 13, 894–905 (2021)

    Article  CAS  Google Scholar 

  13. X. Zhou, S. Li, T. Su, M. Hu, Q. Hu, B. Qin, In situ synthesis and thermoelectric properties of Te/FeTe2 composites. J. Mater. Sci. Mater. Electron. 33, 23673–23681 (2022)

    Article  CAS  Google Scholar 

  14. Z. Bai, Y. Ji, B. Qin, Microstructure and thermoelectric properties of marcasite-type compounds XTe2 (X = fe, Co, Ni) prepared by solid-state reaction. J. Mater. Sci. Mater. Electron. 34, 461 (2023)

    Article  CAS  Google Scholar 

  15. K. Ben Messaoud, J. Ouerfelli, K. Boubaker, M. Amlouk, Structural properties of FeTe2 thin films synthesized by tellurization of amorphous iron oxide thin films. Mater. Sci. Semicond. Process. 16, 1912–1917 (2013)

    Article  CAS  Google Scholar 

  16. W. Zhang, Y. Cheng, J. Zhan, W. Yu, L. Yang, L. Chen, Y. Qian, Synthesis of nanocrystalline marcasite iron ditelluride FeTe2 in aqueous solution. Mater. Sci. Engineering: B 79, 244–246 (2001)

    Article  Google Scholar 

  17. B. Qin, Y. Ji, T. Su, Z. Bai, R. Huang, J. Zhang, Rapid preparation and electrical transport properties of FeTe2 compounds. Rare Metal Mater. Eng. 48, 931–935 (2019)

    CAS  Google Scholar 

  18. J. Du, F. Wang, L. Jin, Z. Quan, Y. Bai, X. Xu, Enhancement of ferromagnetism in FeTe2 nanoparticles by Cr doping. Mater. Lett. 184, 261–264 (2016)

    Article  CAS  Google Scholar 

  19. H. Chibani, H. Yahi, C. Ouettar, Tuning the magnetic properties of FeTe2 monolayer doped by (TM: V, Mn, and Co). J. Magn. Magn. Mater. 552, 169204 (2022)

    Article  CAS  Google Scholar 

  20. X.H. Tian, J.M. Zhang, The structural, elastic, electronic and optical properties of orthorhombic FeX2 (X = S, Se, Te). Superlattices Microstruct. 119, 201–211 (2018)

    Article  CAS  Google Scholar 

  21. J. Guo, S. Liang, Y. Shi, B. Li, C. Hao, X. Wang, T. Ma, Electrocatalytic properties of iron chalcogenides as low-cost counter electrode materials for dye-sensitized solar cells. RSC Adv. 5, 72553 (2015)

    Article  CAS  Google Scholar 

  22. Y. Guo, Y. Cheng, Q. Li, K. Chu, FeTe2 as an earth-abundant metal telluride catalyst for electrocatalytic nitrogen fixation. J. Energy Chem. 56, 259–263 (2021)

    Article  CAS  Google Scholar 

  23. S.J. Park, H. Kwak, H.S. Kim, J. Bang, H. Park, O. Park, T. Kim, S. Kim, Evolution of electrical transport properties in FeTe2-CoTe2 solid solution system for optimum thermoelectric performance. J. Alloys Compd. 960, 170850 (2023)

    Article  CAS  Google Scholar 

  24. S.J. Park, S. Kim, O. Park, S.W. Lee, S. Kim, Thermoelectric transport properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2, and their solid-solution compositions. Electron. Mater. Lett. (2023). https://doi.org/10.1007/s13391-023-00459-8

    Article  Google Scholar 

  25. K.H. Lee, Y. Kim, D.H. Kim, C.O. Park, H.S. Kim, S. Kim, Studies on phase formation behavior and thermoelectric transport properties of Cu-doped Bi2Te3–Bi2S3 system. J. Mater. Res. Technol. 15, 4781–4789 (2021)

    Article  CAS  Google Scholar 

  26. K.H. Lee, H.S. Kim, S. Choo, W.H. Shin, J.H. Lim, S.W. Kim, S. Kim, Improved carrier transport properties by I-doping in n-type Cu0.008Bi2Te2.7Se0.3 thermoelectric alloys. Scr. Mater  186, 357–361 (2020)

    Article  CAS  Google Scholar 

  27. Y.M. Han, J. Zhao, M. Zhou, X.X. Jiang, H.Q. Leng, L.F. Li, Thermoelectric performance of SnS and SnS–SnSe solid solution. J. Mater. Chem. A Mater. 3, 4555–4559 (2015)

    Article  CAS  Google Scholar 

  28. S.G. Kwak, G.E. Lee, I.H. Kim, Effects of Se doping on thermoelectric properties of tetrahedrite Cu12Sb4S13 – zSez. Electron. Mater. Lett. 17, 164–171 (2021)

    Article  CAS  Google Scholar 

  29. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Ergül, Z. Ikonic, M.S. Toprak, Radamson, unprecedented thermoelectric power factor in SiGe nanowires field-effect transistors. ECS J. Solid State Sci. Technol. 6, Q114 (2017)

    Article  CAS  Google Scholar 

  30. Y. Jin, T. Hong, D. Wang, Y. Xiao, W. He, X. Gao, Y. Qiu, L.D. Zhao, Band structure and microstructure modulations enable high quality factor to elevate thermoelectric performance in Ge0.9Sb0.1Te-x%FeTe2. Mater. Today Phys. 20, 100444 (2021)

    Article  CAS  Google Scholar 

  31. W.H. Shin, J.W. Roh, B. Ryu, H.J. Chang, H.S. Kim, S. Lee, W.S. Seo, K. Ahn, Enhancing thermoelectric performances of bismuth antimony telluride via synergistic combination of multiscale structuring and band alignment by FeTe2 incorporation. ACS Appl. Mater. Interfaces 10, 3689 (2018)

    Article  CAS  Google Scholar 

  32. L. Zhang, B. Qin, C. Sun, Y. Ji, D. Zhao, Effect of synthesis factors on microstructure and thermoelectric properties of FeTe2 prepared by solid-state reaction. Materials 16, 7170 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Scientific Research Cultivation Project (LPSSY2023KJZDPY02), Natural Science Foundation of China (52062031), Materials and Chemicals Direction Team (LPSSY2023XKTD06), Carbon Neutral Engineering Research Center of Guizhou colleges and universities in Coal Industry (Qian Jiao Ji [2023] No. 044), Guizhou Province first-class professional construction point (GZSylzy202103), Youth Fund of Education Department of Guizhou Province (Qianjiaohe KY Zi [2022] No. 050), and Liupanshui Science and Technology Department Foundation (52020-2023-0-2-10).

Author information

Authors and Affiliations

Authors

Contributions

YJ contributed toward writing—original draft, methodology, and investigation. LZ contributed toward writing—review & data curation. BQ contributed toward investigation, funding acquisition, supervision, and writing—review & editing. DZ contributed toward funding acquisition and data curation. CS contributed toward writing—review & data curation, and investigation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Bingke Qin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Zhang, L., Qin, B. et al. Thermoelectric properties of polycrystalline SnxFeTe2 prepared by atmospheric pressure solid-state reaction. J Mater Sci: Mater Electron 34, 2331 (2023). https://doi.org/10.1007/s10854-023-11757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11757-0

Navigation