Skip to main content
Log in

Preparation and Thermoelectric Properties of Pb1–x Fe x Te Alloys Doped with Iodine

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This is the first systematic report on the preparation and thermoelectric properties of n-type Pb1–x Fe x Te alloys. Iodine-doped n-type Pb0.85Fe0.15Te polycrystalline was prepared by melting and hot-pressing techniques. The morphology and phase structure of the prepared materials were analyzed by scanning electron microscopy and x-ray diffraction, which indicated that the samples possessed a rock-salt crystal structure and showed a biphase structure. The major phase was the polycrystalline PbTe compound and the second phase was the FeTe compound. The FeTe nano-/micro-precipitates were homogeneously distributed in the PbTe matrix, which is beneficial for the reduction of the lattice thermal conductivity. The effects of the iodine content on the thermoelectric properties of I-doped Pb0.85Fe0.15Te have been investigated. The measurement results of electrical resistivity, carrier concentration, Seebeck coefficient, and thermal conductivity in the temperature range of 300–850 K indicate that the thermoelectric transport properties of the obtained samples are sensitive to the iodine content. When the concentration of iodine is about 0.6 at.%, the maximum dimensionless figure-of-merit value of ∼0.65 at 800 K was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  4. J. Davidow and Y. Gelbstein, J. Electron. Mater. 42, 1542 (2013).

    Article  Google Scholar 

  5. D. Wu, L.D. Zhao, S. Hao, Q. Jiang, F. Zheng, J.W. Doak, H. Wu, H. Chi, Y. Gelbstein, C. Uher, C. Wolverton, M. Kanatzidis, and J. He, J. Am. Chem. Soc. 136, 11412 (2014).

    Article  Google Scholar 

  6. K. Kirievsky, Y. Gelbstein, and D. Fuks, J. Solid State Chem. 203, 247 (2013).

    Article  Google Scholar 

  7. C. Fu, S. Bai, Y. Liu, Y. Tang, L.D. Chen, X. Zhao, and T.J. Zhu, Nat. Commun. 6, 8144 (2015).

    Article  Google Scholar 

  8. Y. Gelbstein, N. Tal, A. Yarmek, Y. Rosenberg, M.P. Dariel, S. Ouardi, B. Balke, C. Felser, and M. Köhne, J. Mater. Res. 26, 1919 (2011).

    Article  Google Scholar 

  9. X. Liu, L. Xi, W. Qiu, J. Yang, T.J. Zhu, X. Zhao, and W. Zhang, Adv. Electron. Mater. 2, 1500284 (2015).

    Article  Google Scholar 

  10. Y. Sadia, L. Dinnerman, and Y. Gelbstein, J. Electron. Mater. 42, 1926 (2013).

    Article  Google Scholar 

  11. A.D. Lalonde, Y.Z. Pei, and G.J. Snyder, Energy Environ. Sci. 4, 2090 (2011).

    Article  Google Scholar 

  12. H.J. Goldsmid, Applications of Thermoelectricity (London: Butler & Tanner, 1960), pp. 14–15.

    Google Scholar 

  13. A.F. Ioffe, L.S. Stil’Bans, E.K. Iordanishvili, T.S. Stavitskaya, and A. Gelbtuch, Phys. Today 12, 372 (1959).

    Article  Google Scholar 

  14. J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2011).

    Article  Google Scholar 

  15. J.P. Heremans, B. Wiendlocha, and S.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).

    Article  Google Scholar 

  16. Y.Z. Pei, X.Y. Shi, A.D. LaLonde, H. Wang, L.D. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  17. Y.Z. Pei, H. Wang, Z.M. Gibbs, A.D. LaLonde, and G.J. Snyder, NPG Asia Mater. 4, 1 (2012).

    Article  Google Scholar 

  18. V. Osinniy, A. Jedrzejczak, W. Domuchowski, and K. Dybko, Acta Phys. Pol. A 108, 809 (2005).

    Article  Google Scholar 

  19. A. Łusakowski, P. BogusŁawski, and T. Radzyński, Phys. Rev. B 83, 115206 (2011).

    Article  Google Scholar 

  20. X.J. Tan, H.Z. Shao, T.Q. Hu, G.Q. Liu, and S.F. Ren, J. Phys. Condens. Matter 27, 095501 (2015).

    Article  Google Scholar 

  21. D.T. Morelli, J.P. Heremans, and C.M. Thrush, Phys. Rev. B 67, 35206 (2003).

    Article  Google Scholar 

  22. R. Blachnik and R. Igel, Z. Naturforsch. B 29, 625 (1974).

    Article  Google Scholar 

  23. Y.Z. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder, Adv. Funct. Mater. 21, 241 (2011).

    Article  Google Scholar 

  24. A.F. May, J.-P. Fleurial, and G.J. Snyder, Phys. Rev. B 78, 125205 (2008).

    Article  Google Scholar 

  25. V.I. Fistul, Heavily Doped Semiconductors (New York: Plenum Press, 1969), pp. 101–110.

    Google Scholar 

  26. D.K.C. MacDonald, Thermoelectricity: An Introduction to the Principles (New York: Wiley, 1962), pp. 37–56.

    Google Scholar 

  27. H.J. Goldsmid and J.W. Sharp, J. Electron. Mater. 28, 869 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X.L., Cai, W., Deng, H.D. et al. Preparation and Thermoelectric Properties of Pb1–x Fe x Te Alloys Doped with Iodine. J. Electron. Mater. 46, 2645–2651 (2017). https://doi.org/10.1007/s11664-016-4857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4857-y

Keywords

Navigation