Skip to main content
Log in

Microstructure and thermoelectric properties of marcasite-type compounds XTe2 (X = Fe, Co, Ni) prepared by solid-state reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The marcasite-type compounds XTe2 (X = Fe, Co, Ni) are function materials with electrical, magnetic, optical and superconducting application value. However, XTe2 are rare studied as thermoelectric materials. In this paper, the marcasite-type compounds XTe2 are prepared rapidly by vacuum solid-state reaction method. The sample interior is rich in micro-pores and complex crystal structures. The Seebeck coefficient value of FeTe2 changes from positive to negative, indicating that the semiconductor type changes from p-type to n-type as the temperature increases. In this system, the maximum Seebeck coefficient of 47.24 μV/K at 305 K is obtained for FeTe2. The lowest electrical resistivity of 1.45 μΩ m is obtained for NiTe2 at 567 K. The maximum power factor of the CoTe2 sample is 334.05 μW m−1 K−2 at 570 K. The order of the magnitude of the thermal conductivity of the marcasite samples is NiTe2 > CoTe2 > FeTe2, and the lowest thermal conductivity value ~ 2.29 W/(m K) is obtained for FeTe2 when the test temperature is 599 K. The maximum ZT value ~ 3.7 × 10–2 at 619 K is obtained for CoTe2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H.D. Lutz, B. Müller, Lattice vibration spectra. LXVIII. Single-crystal Raman spectra of marcasite-type iron chalcogenides and pnictides, FeX2 (X=S, Se, Te; P, As, Sb). Phys. Chem. Miner. 18, 265–268 (1991)

    Article  CAS  Google Scholar 

  2. J.A.R. Cheda, E.F. Westrum Jr., F. Gronvold, Heat capacity and other thermodynamic properties of CoTe2 from 5 to 1030K and of CoTe2315 from 300 to 1040K. Monatsh. Chem. 117, 1223–1238 (1986)

    Article  CAS  Google Scholar 

  3. Q.C. Jia, H.J. Zhang, L.B. Kong, Nanostructure-modified in-situ synthesis of nitrogen-doped porous carbon microspheres (NPCM) loaded with FeTe2 nanocrystals and NPCM as superior anodes to construct high-performance lithium-ion capacitors. Electrochim. Acta 337, 135749 (2020)

    Article  CAS  Google Scholar 

  4. M. Liu, X.Q. Lu, C. Guo, Z.J. Wang, Y.P. Li, Y. Lin, Y. Zhou, S.T. Wang, J. Zhang, Architecting mesoporous N-doped graphitic carbon framework encapsulating CoTe2 as efficient oxygen evolution electrocatalyst. ACS Appl. Mater. Interfaces 9, 36146–36153 (2017)

    Article  CAS  Google Scholar 

  5. K. Kishimoto, K. Kondo, T. Koyanagi, Preparation and thermoelectric properties of sintered Fe1−xCoxTe2 (0≤x≤0.4). J. Appl. Phys. 100, 093710 (2006)

    Article  Google Scholar 

  6. X.L. Cao, W. Cai, H.D. Deng, R.L. Gao, C.L. Fu, F.S. Pan, Preparation and thermoelectric properties of Pb1–x FexTe alloys doped with iodine. J. Electron. Mater. 46, 2645–2651 (2017)

    Article  CAS  Google Scholar 

  7. C.Q. Xu, B. Li, W.H. Jiao, W. Zhou, B. Qian, R. Sankar, N.D. Zhigadlo, Y.P. Qi, D. Qian, F.C. Chou, X.F. Xu, Topological type-II dirac fermions approaching the fermi level in a transition metal dichalcogenide NiTe2. Chem. Mater. 30, 4823–4830 (2018)

    Article  CAS  Google Scholar 

  8. Y.X. Lei, J.P. Zhou, J.Z. Wang, N.X. Miao, Z.Q. Guo, Qadeer-Ui Hassana, Novel magnetic properties of uniform NiTex nanorods selectively synthesized by hydrothermal method. Mater. Des. 117, 390–395 (2017)

    Article  CAS  Google Scholar 

  9. X. Wang, X.K. Huang, W.B. Gao, Y. Tang, P.B. Jiang, K. Lan, R.Z. Yang, B. Wang, R. Li, Metal–organic framework derived CoTe2 encapsulated in nitrogen-doped carbon nanotube frameworks: a high-efficiency bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 6, 3684–3691 (2018)

    Article  CAS  Google Scholar 

  10. J. Lei, Z.C. Wang, H. Wang, X.F. Shi, A.M. Asiri, X.P. Sun, Hierarchical CoTe2 nanowire array: an effective oxygen evolution catalyst in alkaline media. ACS Sustain. Chem. Eng. 6, 4481–4485 (2018)

    Article  Google Scholar 

  11. G.J. Zhang, K.H. Liu, J.S. Zhou, Cobalt telluride/graphene composite nanosheets for excellent gravimetric and volumetric Na-ion storage. J. Mater. Chem. A 6, 6335–6343 (2018)

    Article  CAS  Google Scholar 

  12. K.S. Bhat, S. Shenoy, H.S. Nagaraja, K. Sridharan, Porous cobalt chalcogenide nanostructures as high performance pseudo-capacitor electrodes. Electrochim. Acta 248, 188–196 (2017)

    Article  CAS  Google Scholar 

  13. H. Najafi, K.A. Woodbury, Optimization of a cooling system based on peltier effect for photovoltaic cells. Sol. Energy 91, 152–160 (2013)

    Article  Google Scholar 

  14. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  15. F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285, 703–706 (1999)

    Article  CAS  Google Scholar 

  16. S. Kokyay, E. Kilinc, F. Uysal, H. Kurt, E. Celik, M. Dugenci, A prediction model of artifificial neural networks in development of thermoelectric materials with innovative approaches. Eng. Sci. Technol. 23, 1476–1485 (2020)

    Google Scholar 

  17. J. He, T.M. Tritt, Advances in thermoelectric materials research: looking back and moving forward. Science 357, 9997 (2017)

    Article  Google Scholar 

  18. M.S. Hossain, T.Z. Li, Y. Yu, J. Yong, J. Bahk, E. Skafifidas, Recent advances in printable thermoelectric devices: materials, printing techniques, and applications. RSC Adv. 10, 8421–8434 (2020)

    Article  CAS  Google Scholar 

  19. Y.H. Ji, B.K. Qin, R. Huang, J.Z. Zhang, Thermoelectric properties of CoTe2 fast prepared by solid-state reaction. J. Kunming Univ. Sci. Technol. 45, 24–28 (2020)

    Google Scholar 

  20. X. Zhou, S. Li, T. Su, M. Hu, Q. Hu, B. Qin, In situ synthesis and thermoelectric properties of Te/FeTe2 composites. J. Mater. Sci. 33, 23673–23681 (2022)

    CAS  Google Scholar 

  21. H. Chibani, H. Yahi, C. Ouettar, Tuning the magnetic properties of FeTe2 monolayer doped by (TM: V, Mn, and Co). J. Magn. Magn. Mater. 552, 169204 (2022)

    Article  CAS  Google Scholar 

  22. B.S. de Lima, R.R. de Assia, F.B. Santos, L.E. Correa, T.W. Grant, A.L.R. Manesco, G.W. Martins, L.T.F. Eleno, M.S. Torikachvili, A.J.S. Machado, Properties and superconductivity in Ti-doped NiTe2 single crystals. Solid State Commun. 283, 27–31 (2018)

    Article  Google Scholar 

  23. Y. Yin, J. Xu, W. Guo, Z. Wang, X. Du, C. Chen, Z. Zheng, D. Liu, D. Qu, Z. Xie, H. Tang, J. Li, A single-step fabrication of CoTe2 nanofilm electrode toward efficient overall water splitting. Electrochim. Acta 307, 451–4581 (2019)

    Article  CAS  Google Scholar 

  24. Y. Li, C.G. Li, B.B. Wang, W.J. Li, P. Che, A comparative study on the thermoelectric properties of CoSb3 prepared by hydrothermal and solvothermal route. J. Alloy Compd. 772, 770–774 (2019)

    Article  CAS  Google Scholar 

  25. D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995)

    Google Scholar 

  26. Y. Pei, H. Wang, G.J. Snyder, Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012)

    Article  CAS  Google Scholar 

  27. T. Su, X. Jia, H. Ma, J. Guo, Y. Jiang, N. Dong, L. Deng, X. Zhao, T. Zhu, C. Wei, Thermoelectric properties of nonstoichiometric PbTe prepared by HPHT. J. Alloys Compds. 468, 410–413 (2009)

    Article  CAS  Google Scholar 

  28. S. Byun, J. Cha, C. Zhou, Y.K. Lee, H. Lee, S.H. Park, W.B. Lee, I. Chung, Unusual n-type thermoelectric properties of Bi2Te3 doped with divalent alkali earth metals. J. Solid State Chem. 269, 396–400 (2019)

    Article  CAS  Google Scholar 

  29. Q. Bingke, Ji. Yonghua, B. Zhiling, H. Run, Z. Jinzhu, Thermoelectric properties of nano -structured CoSb3 fast prepared by solid-state reaction. Rare Met. Mater. Eng. 48, 3118–3123 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (52062031), Natural Science Foundation of Liupanshui Normal University (LPSSYKYJJ201902), Science and Technology Innovation Group of Liupanshui Normal University (LPSSYKJTD201905) and Liupanshui Key Laboratory of thermoelectric and electrode materials (52020-2020-0903).

Funding

Funding was provided by Natural Science Foundation of Liupanshui Normal University (Grant no. LPSSYKYJJ201902), Engineering and Technology Research Center of Liupanshan Resources (Grant no. LPSSYKJTD201905), Liupanshui Key Laboratory of Thermoelectric and Electrode Materials (Grant no. 52020-2020-0903), National Natural Science Foundation of China (Grant no. 52062031).

Author information

Authors and Affiliations

Authors

Contributions

ZB contributed to data curation, writing–original draft. YJ contributed to data curation. BQ contributed to writing-review and editing and funding acquisition.

Corresponding author

Correspondence to Bingke Qin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Ji, Y. & Qin, B. Microstructure and thermoelectric properties of marcasite-type compounds XTe2 (X = Fe, Co, Ni) prepared by solid-state reaction. J Mater Sci: Mater Electron 34, 461 (2023). https://doi.org/10.1007/s10854-023-09915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09915-5

Navigation