Skip to main content
Log in

Thermoelectric Transport Properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2, and Their Solid-Solution Compositions

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Transition-metal chalcogenides with tunable electronic transport properties and unique crystal structures have attracted much attention as potential thermoelectric materials. In this study, the electrical, thermal, and thermoelectrical transport properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2 and a series of solid-solution compositions (Co0.5Fe0.5(Se1−yTey)2, y = 0.25, 0.5, and 0.75) were investigated. Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys exhibited high power factors of 1.37 and 1.53 mW/mK2 at 600 K, respectively, and their solid-solution compositions exhibited lower power factors between 0.38 and 0.81 mW/mK2. The lattice thermal conductivities of Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 were 2.87 and 1.71 W/mK at 300 K, respectively, and their solid-solution compositions exhibited lower lattice thermal conductivities between 0.96 and 1.98 W/mK. Consequently, the thermoelectric figure of merit (zT) of the Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys was 0.16 and 0.18 at 600 K, respectively, and the zT of their solid-solution composition exhibited lower values between 0.04 and 0.09. As the solid-solution composition exhibited a lower thermoelectric performance than the Co0.5Fe0.5Se2 and Co0.5Fe0.5Te2 polycrystalline alloys, the lower thermoelectric performance was analyzed and discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caballero-Calero, O., Ares, J.R., Martín-González, M.: Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the earth. Adv. Sustain. Syst. 5(11), 2100095 (2021)

    Article  CAS  Google Scholar 

  2. Bell, E., Lon, E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008)

    Article  CAS  Google Scholar 

  3. Gaultois, M.W., Sparks, T.D., Borg, C.K.H., Seshadri, R., Bonificio, W.D., Clarke, D.R.: Data-driven review of thermoelectric materials: performance and resource considerations BT -. Chem. Mater. 25, 2911–2920 (2013)

    Article  CAS  Google Scholar 

  4. Chen, M.M., Xue, H.G., Guo, S.P.: Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord. Chem. Rev. 368, 115–133 (2018)

    Article  CAS  Google Scholar 

  5. Zhang, Y., Zhou, Q., Zhu, J., Yan, Q., Dou, S.X., Sun, W.: Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 27(35), 1702317 (2017)

    Article  Google Scholar 

  6. Zhou, J., Liu, Y., Zhang, S., Zhou, T., Guo, Z.: Metal chalcogenides for potassium storage. InfoMat 2(3), 437–465 (2020)

    Article  CAS  Google Scholar 

  7. Han, C., Sun, Q., Li, Z., Dou, S.X.: Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater. 6(15), 1600498 (2016)

    Article  Google Scholar 

  8. Jin, Y., Fang, Y., Li, Z., Hao, X., He, F., Guan, B., Xu, W.: Construction of conducting bimetallic organic metal chalcogenides via selective metal metathesis and oxidation transformation. Nat. Commun. 13(1), 6294 (2022)

    Article  CAS  Google Scholar 

  9. Chen, S., Gong, X.G., Duan, C.G., Zhu, Z.Q., Chu, J.H., Walsh, A., Wei, S.H.: Band structure engineering of multinary chalcogenide topological insulators. Phys. Rev. B 83(24), 245202 (2011)

    Article  Google Scholar 

  10. Zhao, L.D., Lo, S.H., Zhang, Y., Sun, H., Tan, G., Uher, C., Kanatzidis, M.G.: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373–377 (2014)

    Article  CAS  Google Scholar 

  11. Zhao, L.D., Tan, G., Hao, S., He, J., Pei, Y., Chi, H., Kanatzidis, M.G.: Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351(6269), 141–144 (2016)

    Article  CAS  Google Scholar 

  12. Duong, A.T., Nguyen, V.Q., Duvjir, G., Duong, V.T., Kwon, S., Song, J.Y., Cho, S.: Achieving ZT= 2.2 with Bi-doped n-type SnSe single crystals. Nat. Commun. 7(1), 13713 (2016)

    Article  CAS  Google Scholar 

  13. Xu, P., Fu, T., Xin, J., Liu, Y., Ying, P., Zhao, X., Zhu, T.: Anisotropic thermoelectric properties of layered compound SnSe2. Sci. Bull. 62, 1663–1668 (2017)

    Article  CAS  Google Scholar 

  14. Kim, S.I., Bang, J., An, J., Hong, S., Bang, G., Shin, W.H., Lee, K.: Effect of Br substitution on thermoelectric transport properties in layered SnSe2. J. Alloy. Compd. 868, 159161 (2021)

    Article  CAS  Google Scholar 

  15. Pang, H., Qiu, Y., Wang, D., Qin, Y., Huang, R., Yang, Z., Zhao, L.: Realizing N-type SnTe thermoelectrics with competitive performance through suppressing Sn vacancies. J. Am. Chem. Soc. 143, 8538–8542 (2021)

    Article  CAS  Google Scholar 

  16. Chen, Y., Nielsen, M.D., Gao, Y.B., Zhu, T.J., Zhao, X., Heremans, J.P.: SnTe–AgSbTe2 thermoelectric alloys. Adv. Energy Mater. 2(1), 58–62 (2012)

    Article  CAS  Google Scholar 

  17. Lee, K.H., Oh, M.W., Kim, H.S., Shin, W.H., Lee, K., Lim, J.H., Kim, S.I.: Enhanced thermoelectric transport properties of n-type InSe due to the emergence of the flat band by Si doping. Inorg. Chem. Front. 6(6), 1475–1481 (2019)

    Article  CAS  Google Scholar 

  18. Kim, J.I., Kim, H.S., Kim, S.I.: Electrical and thermal transport properties of S-and Te-doped InSe alloys. J. Phys. D Appl. Phys. 52(29), 295501 (2019)

    Article  CAS  Google Scholar 

  19. Ahn, K., Cho, E., Rhyee, J.S., Kim, S.I., Mock, L.S., Lee, K.H.: Effect of cationic substitution on the thermoelectric properties of In4−x Mx Se2.95 compounds (M= Na, Ca, Zn, Ga, Sn, Pb; x= 01). Appl. Phys. Lett. 99(10), 102110 (2011)

    Article  Google Scholar 

  20. Ahn, K., Cho, E., Rhyee, J.S., Kim, S.I., Hwang, S., Kim, H.S., Lee, K.H.: Improvement in the thermoelectric performance of the crystals of halogen-substituted In4Se3xH0.03 (H= F, Cl, Br, I): effect of halogen-substitution on the thermoelectric properties in In4Se3−x. J. Mater. Chem. 22(12), 5730–5736 (2012)

    Article  CAS  Google Scholar 

  21. Ghosh, A., Thangavel, R.: Electronic structure and optical properties of iron based chalcogenide FeX2 (X= S, Se, Te) for photovoltaic applications: a first principle study. Indian J. Phys. 91(11), 1339–1344 (2017)

    Article  CAS  Google Scholar 

  22. Wei, T.R., Qin, Y., Deng, T., Song, Q., Jiang, B., Liu, R., Chen, L.: Copper chalcogenide thermoelectric materials. Sci. China Mater. 62(1), 8–24 (2019)

    Article  CAS  Google Scholar 

  23. Snyder, G., Jeffrey, S., Toberer. Eric.: Complex thermoelectric materials. In: Vincent Dusastre (eds.) Materials for Sustainable Energy A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. Nature Publishing Group, UK (2011)

  24. Kishimoto, K., Kondo, K., Koyanagi, T.: Preparation and thermoelectric properties of sintered Fe1−xCoxTe2 (0≤ x≤ 0.4). J. Appl. Phys. 100(9), 093710 (2006)

    Article  Google Scholar 

  25. Wu, P., Huang, M., Yin, N., Li, P.: The modulation effect of MoS2 monolayers on the nucleation and growth of pd clusters: first-principles study. Nanomaterials 9(3), 395 (2019)

    Article  CAS  Google Scholar 

  26. Chen, K.X., Wang, X.M., Mo, D.C., Lyu, S.S.: Thermoelectric properties of transition metal dichalcogenides: from monolayers to nanotubes. J. Phys. Chem. C 119(47), 26706–26711 (2015)

    Article  CAS  Google Scholar 

  27. Zhou, Y., Wan, J., Li, Q., Chen, L., Zhou, J., Wang, H., Huang, H.: Chemical welding on semimetallic TiS2 nanosheets for high-performance flexible n-type thermoelectric films. ACS Appl. Mater. Interfaces 9(49), 42430–42437 (2017)

    Article  CAS  Google Scholar 

  28. Li, D., Zhou, W., Zhou, Q., Ye, G., Wang, T., Wu, J., Xu, J.: Transparent 1T-MoS2 nanofilm robustly anchored on substrate by layer-by-layer self-assembly and its ultra-high cycling stability as supercapacitors. Nanotechnology 28(39), 395401 (2017)

    Article  Google Scholar 

  29. Oh, J.Y., Lee, J.H., Han, S.W., Chae, S.S., Bae, E.J., Kang, Y.H., Lee, T.I.: Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ. Sci 9(5), 1696–1705 (2016)

    Article  CAS  Google Scholar 

  30. Bang, J., Kim, H.S., Kim, D.H., Lee, S.W., Park, O., Kim, S.I.: Phase formation behavior and electronic transport properties of HfSe2-HfTe2 solid solution system. J. Alloy. Compd. 920, 166028 (2022)

    Article  CAS  Google Scholar 

  31. Park, O., Kim, T., Lee, S.W., Kim, H.S., Shin, W.H., Rahman, J.U., Kim, S.I.: Study of phase formation behavior and electronic transport properties in the FeSe2-FeTe2 system. Korean J. Met. Mater. 60(4), 315–320 (2022)

    Article  CAS  Google Scholar 

  32. Kayestha, R., Hajela, K.: ESR studies on the effect of ionic radii on displacement of Mn2+ bound to a soluble β-galactoside binding hepatic lectin. FEBS Lett. 368(2), 285–288 (1995)

    Article  CAS  Google Scholar 

  33. An, Y.B., Park, S.J., Park, O., Kim, S.I.: Transition to n-type thermoelectric conduction in Ni-doped FeSe2 alloys. Korean J. Met. Mater. 60(12), 926–932 (2022)

    Article  CAS  Google Scholar 

  34. Park, O., Lee, S.W., Park, S.J., Kim, S.I.: Phase formation behavior and thermoelectric transport properties of S-doped FeSe2−xSx polycrystalline alloys. Micromachines 13(12), 2066 (2022)

    Article  Google Scholar 

  35. An, Y.B., Park, S.J., Park, O., Lee, S.W., Kim, S.I.: Electronic, thermal, and thermoelectric properties of Ni-doped FeTe2 polycrystalline alloys. Electron. Mater. Lett. 1–7 (2022)

  36. Kim, S., Park, S.J., Park, O., Park, H., Heo, M., Kim, H.S., Kim, S.I.: Phase formation behavior and thermoelectric properties of FeSe2-CoSe2 system. Solid State Sci. 142, 107336 (2023)

    Article  Google Scholar 

  37. Park, S.J., Kwak, H., Kim, H.S., Bang, J., Park, H., Park, O., Kim, S.I.: Evolution of electrical transport properties in FeTe2-CoTe2 solid solution system for optimum thermoelectric performance. J. Alloy. Compd. 960, 170850 (2023)

    Article  CAS  Google Scholar 

  38. Snyder, G.J., Snyder, A.H., Wood, M., Gurunathan, R., Snyder, B.H., Niu, C.: Weighted mobility. Adv. Mater. 32(25), 2001537 (2020)

    Article  CAS  Google Scholar 

  39. Lee, K.H., Kim, S.I., Lim, J.C., Cho, J.Y., Yang, H., Kim, H.S.: Approach to determine the density‐of‐states effective mass with carrier concentration‐dependent Seebeck coefficient. Adv. Funct. Mater. 2203852 (2022)

  40. Wang, H.: High Temperature Transport Properties of Lead Chalcogenides and Their Alloys. California Institute of Technology (2014)

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2022R1F1A1063054). Furthermore, this study was supported by the NanoMaterial Technology Development Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2022M3H4A1A04076667).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-il Kim.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.J., Kim, S., Park, O. et al. Thermoelectric Transport Properties of Co0.5Fe0.5Se2, Co0.5Fe0.5Te2, and Their Solid-Solution Compositions. Electron. Mater. Lett. (2023). https://doi.org/10.1007/s13391-023-00459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-023-00459-8

Keywords

Navigation