Skip to main content
Log in

Green synthesis of MnCr2O4 nanoparticles using Vernonia amygdalina (bitter leaf) for photocatalytic crystal violet dye degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Various environmental concerns have emerged today as a result of the developing industrial revolution. The use of hazardous oxidizing agents and organic dyes is one of the biggest problems facing the textile industry today. This approach needs effective and affordable system to degrade such organic pollutants from the point sources. In this work, MnCr2O4 nanoparticle is synthesized using a green method for a crystal violet dye removal from wastewater. Three nanoparticle samples (CMO-A, CMO-B and CMO-C) were synthesized via green synthesis using bitter leaf extract and different concentration (0.3 M, 0.4 M, and 0.5 M) of KMnO4. The structural, morphological, optical properties, and photocatalytic activity of the synthesized MnCr2O4 spinel were studied. X-ray diffraction (XRD) was used to examine the crystal structure and the MnCr2O4 spinel exhibits cubic symmetry (Fd3m). The lattice parameters, crystallite size, microstrain, and dislocation density of the produced nanoparticles were also assessed using the diffraction data. The bandgap energy of the MnCr2O4 spinel decreased from 1.96 to 1.81 eV as the concentration of Mn ion increases from 0.3 to 0.5 M. The MnCr2O4 spinel showed good absorbance of light in visible range and also showed excellent photodegradation of crystal violet dye solution, with a record of 62.6%, 68.4%, and 74.9% degradation efficiency for CMO-A, CMO-B, and CMO-C, respectively, after 130 min of irradiation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this research work are available from the corresponding author upon reasonable request.

References

  1. S. Aman, S. Gouadria, F.F. Alharbi et al., Novel Sr-based Al2O4 spinel material an environmental friendly electrode for supercapacitor application. Appl. Phys. A 129, 347 (2023). https://doi.org/10.1007/s00339-023-06591-4

    Article  CAS  Google Scholar 

  2. M. Waheed, K. Jabbour, S. Houda, F.M.A. Alzahrani, K.M. Katubi, S. Riaz, M.S. Al-Buriahi, Fabrication of mesoporous Er doped ZnMnO3 nanoflake via sol gel approach for energy storage application. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2022.11.328

    Article  Google Scholar 

  3. M. Abudllah, M. Al Huwayz, N. Alwadai et al., Facile fabrication of ternary CuO/CuS/ZnS for photodegradation of methylene blue. J. Korean Ceram. Soc. 60, 569–580 (2023). https://doi.org/10.1007/s43207-023-00287-4

    Article  CAS  Google Scholar 

  4. O.S. Okwundu et al., Heavy metal sorption using thiolated oils of elaeis guineensis and glycine max. Metall. Mater. Eng. 26(3), 317–327 (2020). https://doi.org/10.30544/538.5

    Article  Google Scholar 

  5. R. Yang et al., MnO2-Based materials for environmental applications. Adv. Mater. 33(9), 1–53 (2021). https://doi.org/10.1002/adma.202004862

    Article  CAS  Google Scholar 

  6. O.S. Okwundu, C.O. Ugwuoke, A.C. Okaro, Recent trends in non-faradaic Supercapacitor Electrode materials. Metall. Mater. Eng. 25, 105–138 (2019). https://doi.org/10.30544/417

    Article  Google Scholar 

  7. C.O. Ugwuoke, S. Ezugwu, S.L. Mammah, A.B.C. Ekwealor, F.I. Ezema, The Application of carbon and graphene quantum dots to emerging optoelectronic devices, in Electrode materials in energy storage and conversion. (Taylor & Francis, UK, 2021), pp.421–436. https://doi.org/10.1201/9781003145585-22

    Chapter  Google Scholar 

  8. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B Environ. 49(1), 1–14 (2004). https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  9. V.S. Kirankumar, S. Sumathi, A review on photodegradation of organic pollutants using spinel oxide. Mater. Today Chem. 18, 100355 (2020)

    Article  CAS  Google Scholar 

  10. S. Guo, H. Lin, K. Zheng, Z. Xiao, F. and, Li, Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo Red under visible light. Dye. Pigment. no. 92, 1278–1284 (2012). https://doi.org/10.1016/j.dyepig.2011.09.004

    Article  CAS  Google Scholar 

  11. A.M. Alenad, M.S. Waheed, S. Aman, N. Ahmad, A.R. Khan, R.Y. Khosa, T.A.M. Taha, Visible light driven Ni doped hematite for photocatalytic reduction of noxious methylene blue. Mater. Res. Bull. 165, 112306 (2023). https://doi.org/10.1016/j.materresbull.2023.112306

    Article  CAS  Google Scholar 

  12. H.A. Alburaih, S. Aman, N. Ahmad, S.R. Ejaz, R.Y. Khosa, A.G. Abid, T.A. Taha, Synergistic photodegradation of methylene blue by Sm doped Fe2O3 photocatalyst under sunlight. Chin. J. Phys. 83, 637–649 (2023). https://doi.org/10.1016/j.cjph.2022.08.017

    Article  CAS  Google Scholar 

  13. S. Das, A. Samanta, S. Jana, Light-assisted synthesis of hierarchical flower-Like MnO2 nanocomposites with solar light induced enhanced photocatalytic activity. ACS Sustain. Chem. Eng. (2017). https://doi.org/10.1021/acssuschemeng.7b02003

    Article  Google Scholar 

  14. H. Zhang et al., Visualization of the formation and 3D porous structure of Ag doped MnO2 aerogel monoliths with high photocatalytic activity. ACS Sustain. Chem. Eng. (2016). https://doi.org/10.1021/acssuschemeng.6b00578

    Article  Google Scholar 

  15. Y. Yang et al., UV-visible-infrared light-driven photothermocatalytic abatement of CO on Cu doped ramsdellite MnO2 nanosheets enhanced by a photoactivation effect. “Applied Catal. B Environ. (2017). https://doi.org/10.1016/j.apcatb.2017.11.017

    Article  Google Scholar 

  16. C.O. Ugwuoke, P.C. Tagbo, O.S. Okwundu, C.A. Okaro, S. Ezugwu, F.I. Ezema, “Low-Temperature Processed Metal Oxides and Ion-Exchanging Surfaces as pH Sensor,” in Chemically deposited nanocrystalline metal oxide thin films, synthesis, characterization, and applications, 2021, pp. 821–861

  17. S.O. Aisida et al., Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl. Nanosci. 10, 305–315 (2020)

    Article  CAS  Google Scholar 

  18. N. Madubuonua et al., Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study. J. Photochem. Photobiol B Biol. 199, 111601 (2019)

    Article  Google Scholar 

  19. S.O. Aisida et al., Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. Mater. Chem. Phys. 237, 121859 (2019)

    Article  CAS  Google Scholar 

  20. C.A. Okaro, O.S. Okwundu, P.C. Tagbo, C.O. Ugwuoke, S. Ezugwu, F.I. Ezema, Nanostructured Metal Oxide-Based Electrode Materials for Ultracapacitors, in Chemically Deposited Nanocrystalline Metal Oxide Thin Films. (Springer Nature, Germany, 2021), pp.561–599. https://doi.org/10.1007/978-3-030-68462-4_22

    Chapter  Google Scholar 

  21. X. Hao et al., Mild aqueous synthesis of urchin-like MnOx hollow nanostructures and their properties for RhB degradation. Chem. Eng. J. (2013). https://doi.org/10.1016/j.cej.2013.06.007

    Article  Google Scholar 

  22. R.T. Rasheed, H.S. Mansoor, R.R. Al-shaikhly, Synthesis and catalytic activity studies of α-MnO2 nanorodes, rutile TiO2 and its composite prepared by hydrothermal method. AIP Conference Proceedings 2213, 020122 (2020)

    Article  CAS  Google Scholar 

  23. W.H. Kuan, C.Y. Chen, C.Y. Hu, Removal of methylene blue from water by γ-MnO 2. Water Sci. Technol. (2011). https://doi.org/10.2166/wst.2011.262

    Article  Google Scholar 

  24. P. Cui, Y. Chen, G. Chen, Degradation of low concentration methyl orange in aqueous solution through sonophotocatalysis with simultaneous recovery of photocatalyst by ceramic membrane microfiltration. Industial Eng. Chem. Res (2011). https://doi.org/10.1021/ie100832q

    Article  Google Scholar 

  25. C. Hou, B. Hu, J. Zhu, Photocatalytic degradation of methylene blue over TiO2 pretreated with varying concentrations of NaOH. Catalysts 8, 575 (2018). https://doi.org/10.3390/catal8120575

    Article  CAS  Google Scholar 

  26. M. Rai, C. Dos-Santos, Nanotechnology Applied To Pharmaceutical Technology (Springer, Switzerland, 2017)

    Book  Google Scholar 

  27. A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep (2008). https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  Google Scholar 

  28. C.O. Ugwuoke, S. Ezugwu, S.L. Mammah, A.B.C. Ekwealor, M. Suguyima, F.I. Ezema, “Physical Methods to Fabricate TiO2 QDs for Optoelectronics Applications,” in Electrode materials in energy storage and conversion, 2021, pp. 321–338. https://doi.org/10.1201/9781003145585-15

  29. S. Chandrasekaran, C. Bowen, P. Zhang, Z. Li, Q. Yuan, X. Ren, L. Deng, Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting. J. Mater. Chem. A 6, 11078–11104 (2018)

    Article  CAS  Google Scholar 

  30. S.K. Rawal, R. Chandra, “Wettability And Optical Studies Of Films prepared from Power Variation Of Co-Sputtered Cr And Zr Targets By Sputtering,” in 2nd International Conference on Innovations in Automation and Mechatronics Engineering, ICIAME 2014, 2014, vol. 14, pp. 304–311. https://doi.org/10.1016/j.protcy.2014.08.040

  31. A. Zekaik, H. Benhebal, B. Benrabah, Synthesis and characterization of Cu doped chromium oxide (Cr2O3) thin films. High Temp. Mater. Proc 38, 806–812 (2019)

    Article  CAS  Google Scholar 

  32. J.T. Anandhi, S.L. Rayer, T. Chithambarathanu, F.T.I.R. “Synthesis, Studies, Optical properties of aluminium doped chromium oxide nanoparticles by microwave irradiation at different concentrations. Chem. Mater. Eng. 5(2), 43–54 (2017). https://doi.org/10.13189/cme.2017.050204

    Article  CAS  Google Scholar 

  33. J. Sackey, R. Morad, A.K.H. Bashir, L. Kotsedi, C. Kaonga, M. Maaza, Bio-synthesised black a-Cr2O3 nanoparticles; experimental analysis and density function theory calculations. J. Alloys Compd. 850, 156671 (2021). https://doi.org/10.1016/j.jallcom.2020.156671

    Article  CAS  Google Scholar 

  34. P. Mohanty, A.R.E. Prinsloo, B.P. Doyle, E. Carleschi, C.J. Sheppard, Structural and magnetic properties of (Co1–xNix)Cr2O4 (x = 0.5, 0.25) nanoparticles. AIP Adv. (2018). https://doi.org/10.1063/1.5006568

    Article  Google Scholar 

  35. P. Mohanty, C.J. Sheppard, A.R.E. Prinsloo, Field induced magnetic properties of Ni doped CoCr2O4. AIP Adv. 2115, 030195 (2019)

    Google Scholar 

  36. H. Mohamed et al., Comprehensive study on morphological, structural and optical properties of ­ Cr2O3 nanoparticle and its antibacterial activities. J. Mater. Sci. Mater. Electron. 0(0), 0 (2019). https://doi.org/10.1007/s10854-019-01125-2

    Article  CAS  Google Scholar 

  37. N. Stüsser, M. Reehuis, M. Tovar, B. Klemke, A. Hoser, J. Hoffmann, Spin reorientation by Ni doping in Cu1 – xNixCr2O4 spinels with x = 0 and 0. 1, and evidence for canted magnetic cr order above the onset of a ferromagnetic cu. J. Magn. Magn. Mater. 506, 166683 (2020). https://doi.org/10.1016/j.jmmm.2020.166683

    Article  CAS  Google Scholar 

  38. J. Singh, V. Verma, R. Kumar, R. Kumar, Influence of Mg2+-substitution on the optical band gap energy of Cr2 – xMgxO3 nanoparticles. Results Phys. 13, 102106 (2019). https://doi.org/10.1016/j.rinp.2019.02.042

    Article  Google Scholar 

  39. N. Shinde, M. Lokhande, A. C., C.D. Lokhande, A green synthesis method for large area silver thin film containing nanoparticles. J. Photochem. Photobiol., B 136, 19–25 (2014). https://doi.org/10.1016/j.jphotobiol.2014.04.011

    Article  CAS  Google Scholar 

  40. N.M. Shinde, A.C. Lokhande, J.S. Bagi, C.D. Lokhande, Biosynthesis of large area (30×30 cm2) silver thin films. Mater. Sci. Semicond. Process. vol. 22, 28–36 (2014). https://doi.org/10.1016/j.mssp.2014.01.011

    Article  CAS  Google Scholar 

  41. T. Siyao, Y. Xiaocai, Y. Danni, W. Liping, L. Jiaqi, Z. Wanting, Study on degradation of diesel pollutants in seawater by composite photocatalyst MnO2/ZrO2. Water Sci. Technol. (2020). https://doi.org/10.2166/wst.2020.316

    Article  Google Scholar 

  42. S. Zhou, Z. Du, X. Li, Y. Zhang, Degradation of methylene blue by natural manganese oxides: kinetics and transformation products. R Soc. Open. Sci. 6, 190351 (2019). https://doi.org/10.1098/rsos.190351

    Article  CAS  Google Scholar 

  43. D. Mondal, S. Das, B. Kumar, D. Bhattacharya, Size engineered Cu-doped α -MnO2nanoparticles for exaggerated photocatalytic activity and energy storage application. Mater. Res. Bull (2019). https://doi.org/10.1016/j.materresbull.2019.03.023

    Article  Google Scholar 

  44. M. Touqeer et al., New Co-MnO based Nanocrsytallite for photocatalysis studies driven by visible light. J. Taibah Univ. Sci. (2020). https://doi.org/10.1080/16583655.2020.1846966

    Article  Google Scholar 

  45. A. Afzal, S. Atiq, M. Saleem, S.M. Ramay, S. Naseem, S.A. Siddiqi, Structural and magnetic phase transition of sol–gel-synthesized Cr2O3 and MnCr2O4 nanoparticles. J. Sol-Gel Sci. Technol. 80(1), 96–102 (2016). https://doi.org/10.1007/s10971-016-4066-4

    Article  CAS  Google Scholar 

  46. E.T. Sibanda, A.R.E. Prinsloo, C.J. Sheppard, P. Mohanty, Size effect on magnetic properties of MnCr2O4 nanoparticles. J. Magn. Magn. Mater. 558, 169486 (2022). https://doi.org/10.1016/j.jmmm.2022.169486

    Article  CAS  Google Scholar 

  47. N. Madubuonu et al., Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity. Appl. Phys. A 126(72), 1–8 (2020)

    Google Scholar 

  48. S.O. Aisida et al., Biosynthesis of silver oxide nanoparticles using leave extract of Telfairia Occidentalis and its antibacterial activity. Mater. Today Proc 36, 208–213 (2021)

    Article  CAS  Google Scholar 

  49. X. Zeng, B. Li, R. Liu, X. Li, T. Zhu, Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.123362

    Article  Google Scholar 

  50. M. Hamza et al., Catalytic removal of alizarin red using chromium manganese oxide nanorods: degradation and kinetic studies. Catalysts. 10, 1150 (2020). https://doi.org/10.3390/catal10101150

    Article  CAS  Google Scholar 

  51. R.O. Ijeh, C.O. Ugwuoke, E.B. Ugwu, S.O. Aisida, F.I. Ezema, Structural, optical and magnetic properties of Cu-doped ZrO2 films synthesized by electrodeposition method. Ceram. Int. 48(4), 4686–4692 (2022). https://doi.org/10.1016/j.ceramint.2021.11.004

    Article  CAS  Google Scholar 

  52. O.R. Alara, N.H. Abdurahman, C. Ishmael, N.A. Kabbashi, Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing Soxhlet and microwave-assisted extraction techniques. J. Taibah Univ. Sci. 13(1), 414–422 (2019). https://doi.org/10.1080/16583655.2019.1582460

    Article  Google Scholar 

  53. N. Bala et al., Green Synthesisof zinc oxide nanoparticles using Hibiscus subdariffa leaf etract: effect of temperature on synthesis, anti-bacterial activity and antidiabetic activity. RSC Adv. 5, 4993–5003 (2014)

    Article  Google Scholar 

  54. R. Dumitru et al., “Synthesis, characterization of nanosized ZnCr2O4 and its photocatalytic performance in the degradation of humic acid from drinking water. Catalysts (2018). https://doi.org/10.3390/catal8050210

    Article  Google Scholar 

  55. M.M. Abdullah, F.M. Rajab, S.M. Al-Abbas, “Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties,” vol. 027121, no. October 2013, 2014, https://doi.org/10.1063/1.4867012

  56. I.L. Ikhioya, C.O. Ugwuoke, R.M. Obodo, D.N. Okoli, M. Maaza, F.I. Ezema, Influence of precursor pH on Bi doped ZnSe material via electrochemical deposition technique. Appl. Surf. Adv. 9, 100232 (2022). https://doi.org/10.1016/j.apsadv.2022.100232

    Article  Google Scholar 

  57. E. Jafarnejad, S. Khanahmadzadeh, F. Ghanbary, M. Enhessari, Synthesis, characterization and optical band gap of Pirochromite (MgCr2O4) nanoparticles by Stearic Acid Sol-Gel Method. Curr. Chem. Lett. 5, 173–180 (2016). https://doi.org/10.5267/j.ccl.2016.7.001

    Article  Google Scholar 

  58. M. Tian et al., Facile synthesis of rod-like TiO2-based composite loaded with g-C3N4 for efficient removal of high-chroma organic pollutants based on adsorption-photocatalysis mechanism. Inorg. Chem. Commun. 141, 109517 (2022). https://doi.org/10.1016/j.inoche.2022.109517

    Article  CAS  Google Scholar 

  59. I. Okeke, K. Agwu, A. Ubachukwu, M. Maaza, F. Ezema, Impact of Cu doping on ZnO nanoparticles phyto-chemically synthesized for improved antibacterial and photocatalytic activities. J. Nanopart. Res. 22, 272 (2020)

    Article  CAS  Google Scholar 

  60. A. Kumar Paul, G. Madras, S. Natarajan, Adsorption-desorption and photocatalytic properties of inorganic-organic hybrid cadmium thiosulfate compounds. Phys. Chem. Chem. Phys. 11(47), 11285–11296 (2009). https://doi.org/10.1039/b913407g

    Article  CAS  Google Scholar 

  61. E. Gao et al., Insights on the mechanism of enhanced selective catalytic reduction of NO with NH3 over Zr-doped MnCr2O4: A combination of in situ DRIFTS and DFT. Chem. Eng. J (2019). https://doi.org/10.1016/j.cej.2019.123956

    Article  Google Scholar 

  62. S. Chiam, S. Pung, F. Yeoh, Recent developments in MnO2 -based photocatalysts for organic dye removal: a review. Environ. Sci. Pollut Res. (2020). https://doi.org/10.1007/s11356-019-07568-8

    Article  Google Scholar 

  63. M.A. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 1–3 (2009). https://doi.org/10.1016/j.cej.2009.02.026

    Article  CAS  Google Scholar 

  64. C. Boon, L. Yong, A. Wahab, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018). https://doi.org/10.1016/j.rser.2017.08.020

    Article  CAS  Google Scholar 

  65. I.L. Ikhioya, C.O. Ugwuoke, D.N. Okoli, A.J. Ekpunobi, M. Maaza, F.I. Ezema, Effect of cobalt on the photovoltaic properties of zinc selenide thin film deposited on fluorine-doped tin oxide (FTO) via electrochemical deposition technique. Curr. Res. Green. Sustain. Chem. (2022). https://doi.org/10.1016/j.cogsc.2022.100630

    Article  Google Scholar 

  66. W. Yuan, X. Liu, L. Li, Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation. Appl. Surf. Sci (2014). https://doi.org/10.1016/J.APSUSC.2014.07.158

    Article  Google Scholar 

  67. S. Taghavi Fardood et al., Facile green synthesis, characterization and visible light photocatalytic activity of MgFe2O4@CoCr2O4 magnetic nanocomposite. J. Photochem. Photobiol A Chem. 423, 3–5 (2022). https://doi.org/10.1016/j.jphotochem.2021.113621

    Article  CAS  Google Scholar 

  68. P. de Cubas, A.W. Semkiw, F.C. Monteiro, P. Los Weinert, J.F.H.L. Monteiro, S.T. Fujiwara, Synthesis of CuCr2O4 by self-combustion method and photocatalytic activity in the degradation of Azo Dye with visible light. J. Photochem. Photobiol. A Chem (2019). https://doi.org/10.1016/j.jphotochem.2020.112797

    Article  Google Scholar 

  69. F. Beshkar, O. Amiri, M. Salavati-Niasari, F. Beshkar, Novel dendrite-like CuCr2O4 photocatalyst prepared by a simple route in order to remove of azo dye in textile and dyeing wastewater. J. Mater. Sci. Mater. Electron. 26(10), 8182–8192 (2015). https://doi.org/10.1007/s10854-015-3479-0

    Article  CAS  Google Scholar 

  70. R. Bajaj, M. Sharma, D. Bahadur, Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalt Trans. 42, 6736–6744 (2013). https://doi.org/10.1039/c2dt32753h

    Article  CAS  Google Scholar 

Download references

Funding

FIE acknowledges the grant by TETFUND under contract number.

TETFUND/DR&D/CE/UNI/NSUKKA/RP/VOL.I and also acknowledges the support received from the Africa Centre of Excellence for Sustainable Power and Energy Development (ACE-SPED), University of Nigeria, Nsukka. We thank Engr. Emeka Okwuosa for the generous sponsorship of April 2014, July 2016, July 2018, and July 2021 conferences/workshops on applications of nanotechnology to energy, health &. Environment and for providing some research facilities.

Author information

Authors and Affiliations

Authors

Contributions

COU carried out the experimental work and drafted the manuscript. AGT revised the manuscript. ROI and HEN analyze experimental result. EIU, SM and AA read the approved submitted manuscript. SE, FIE supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fabian I. Ezema.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 420.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugwuoke, C.O., Temam, A.G., Ijeh, R.O. et al. Green synthesis of MnCr2O4 nanoparticles using Vernonia amygdalina (bitter leaf) for photocatalytic crystal violet dye degradation. J Mater Sci: Mater Electron 34, 2111 (2023). https://doi.org/10.1007/s10854-023-11499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11499-z

Navigation