Skip to main content
Log in

Impact of Cu doping on ZnO nanoparticles phyto-chemically synthesized for improved antibacterial and photocatalytic activities

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Green approach was employed to synthesize Zn1 − xCuxO nanoparticles (x = 0.0, 0.01, 0.03, and 0.05). The impact of Cu doping on the structure, morphology, and optical properties of ZnO nanoparticles was evaluated using XRD, SEM, and UV-vis spectroscopy, respectively. The XRD analyses confirmed that the samples have hexagonal wurtzite structure. The crystallite size, lattice constants, volume of unit cell, and bond length of the nanoparticles showed increasing trend as the Cu concentration was increased from 0 to 5% and vice versa for micro-strain and dislocation density. Atomic packing fraction was found to be 74.05% and bond length was between 1.990 and 1.996 Å. SEM image showed spherical, petal, and rod-like shape. Energy band gap (Eg) of samples red shifted from 3.38 to 3.27 eV. The antibacterial results clearly showed that Cu doping in ZnO NPs improved the diameter of inhibition zone across the selected bacteria and exhibited higher degradation efficiency after 100 min of irradiation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All relevant data are available.

References

  • Ahmad M, Pan C, Yan W, Zhu J (2010) Effect of Pb-doping on the morphology, structural and optical properties of ZnO nanowires synthesized via modified thermal evaporation. Mater Sci Eng 174:55–58

    Article  CAS  Google Scholar 

  • Alara OR, Abdurahman NH, Ukaegbu IC (2019) Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing Soxhlet and microwave assisted extraction techniques. J Taibah Univ Sci 13:414–422. https://doi.org/10.1080/16583655.2019.1582460

    Article  Google Scholar 

  • Amrita KS, Randhawa GS, Singh R (2017) Synthesis and structural analysis of cobalt doped zinc nanoparticles. IOSR J Appl Phys 9:18–24

    Article  Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Aysaa NH, Salmanb HD (2016) Antibacterial activity of modified zinc oxide nanoparticles against Pseudomonas aeruginosa isolates of burn infections. World Sci News 33:1–14

    Google Scholar 

  • Bacterial cell structure (n.d.) In Wikipedia. Retrieved August 13, 2020, from https://blog.apastyle.org/apastyle/2009/10/how-to-cite-wikipedia-in-apa-style.html

  • Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energy 27:1022–27991

    Google Scholar 

  • Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2014) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and antidiabetic activity. RSC Adv 5:4993–5003. https://doi.org/10.1039/C4RA12784F

    Article  CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2005) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  Google Scholar 

  • Ca FF, Xin S, Guo YG, Wan J (2011) Wet chemical synthesis of cu/TiO2 Nanocomposites with integrated Nano-current collectors as high rate anode materials in lithium-ion batteries. Phys Chem Chem Phys 13:2014–2020. https://doi.org/10.1039/c0cp01119c

    Article  CAS  Google Scholar 

  • Chauhana R, Kumar A, Chaudharya RP (2010) Synthesis and characterization of copper doped ZnO nanoparticles. J Chem Pharm Res 2:178–183

    Google Scholar 

  • Chithra MJ, Pushpanathan K (2016) Thermal, structural and optical investigation of cu-doped ZnO nanoparticles. Mod Phys Lett B 30:504–506

    Article  Google Scholar 

  • Cong CJ, Hong JH, Liu QY, Liao L, Zhang KL (2006) Synthesis, structure and ferromagnetic properties of Ni doped ZnO nanoparticles. Solid State Commun 138:511–515

    Article  CAS  Google Scholar 

  • Dao DV, van den Bremt M, Koeller Z, Le TK (2016) Effect of metal ion doping on the optical properties and the deactivation of photocatalytic activity of ZnO nanopowder for application in sunscreens. Powder Technol 288:366–370. https://doi.org/10.1016/j.powtec.2015.11.030

    Article  CAS  Google Scholar 

  • Donlan RM (2008) Biofilms on central venous catheters: is eradication possible? Curr Top Microbiol Immunol 322:133–161. https://doi.org/10.1007/978-3-540-75418-3_7

    Article  CAS  Google Scholar 

  • Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR (2012) Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B: Biointerfaces 94:143–150. https://doi.org/10.1016/j.colsurfb.2012.01.046

    Article  CAS  Google Scholar 

  • Edeoga HO, Okwu DE, Mbaebie B (2005) Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol 4:685–688

    Article  CAS  Google Scholar 

  • Fabbiyola S, Kennedy LJ, Aruldoss U, Bououdina M, Dakhel AA, Vijaya JJ (2015) Synthesis of Co-doped ZnO nanoparticles via co-precipitation: structural, optical and magnetic properties. Powder Technol 286:757–765. https://doi.org/10.1016/j.powtec.2015.08.054

    Article  CAS  Google Scholar 

  • Ganesan S, Babu IG, Mahendran D, Arulselvi PI, Elangovan N, Geetha N, Venkatachalam P (2016) Green engineering of titanium dioxide nanoparticles using Ageratina altissima (L.) King & H.E. Robines. medicinal plant aqueous leaf extracts for enhanced photocatalytic activity. Ann Phytomedicine An Int J 5:69–75. https://doi.org/10.21276/ap.2016.5.2.8

    Article  CAS  Google Scholar 

  • George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Madler L (2009) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ASC Nano 4:15–29. https://doi.org/10.1021/nn901503q

    Article  CAS  Google Scholar 

  • Gubin SP (2009) Biomedical applications of magnetic nanoparticles, Wiley‐VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527627561

  • Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi DRT, Larramendi IR, Jojo T, Serpooshan V, Mahmoudi J (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  CAS  Google Scholar 

  • Hamberg I, Granqvist CG (1986) Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J Appl Phys 60:123–160

    Article  Google Scholar 

  • Handago DT, Zereffa EA, Gonfa BA (2019) Effects of Azadirachta Indica leaf extract, capping agents, on the synthesis of pure and Cu doped ZnO-nanoparticles: a green approach and microbial activity. Open Chem 17:246–253. https://doi.org/10.1515/chem-2019-0018

    Article  CAS  Google Scholar 

  • Health Protection Agency (2012) English national point prevalence survey on healthcare-associated infections and antimicrobial use, Preliminary data

  • Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  • Hong RY, Li JH, Chen LL, Liu DQ, Li HZ, Zheng Y, Ding J (2009) Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol 189:426–432. https://doi.org/10.1016/j.powtec.2008.07.004

    Article  CAS  Google Scholar 

  • Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S (2017) Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activities. Trop J Pharm Res 16:743

    Article  CAS  Google Scholar 

  • Imaga NOA, Bamigbetan DO (2013) In vivo biochemical assessment of aqueous extracts of vernonia amygdalina (bitter leaf). Int J Nutr Metab 5:22–27

    Google Scholar 

  • International Standard Organisation (2010) “Fine ceramics (advanced ceramics, advanced technical ceramics) determination of photocatalytic activity of surfaces in an aqueous medium by degradation of methylene blue,” Tech. Rep., ISO 10678, ISO Geneva: Switzerland

  • Ju-Nam Y, Lead J (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel A, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71:133–137

    Article  CAS  Google Scholar 

  • Kaur P, Kumar S, Negi NS, Rao SM (2015) Enhanced magnetism in Cr-doped ZnO nanoparticles with nitrogen co-doping synthesized using sol–gel technique. Appl Nanosci 5:367–372

    Article  CAS  Google Scholar 

  • Kesah CN, Egri-Okwaji MT, Iroha E (2004) Aerobic bacterial nosocomial infections in paediatric surgical patients at a tertiary health institution in Lagos, Nigeria, Niger. Postgrad Med J 11:4–9

    CAS  Google Scholar 

  • Khan SA, Noreen F, Kanwal S, Hussain G (2017) Comparative synthesis, characterization of Cu-doped ZnO nanoparticles and their antioxidant, antibacterial, antifungal and photocatalytic dye degradation activities. Dig J Nanomater Biostructures 12:877–889

    Google Scholar 

  • Labhane P, Huse V, Patle L, Chaudhari A (2015) Synthesis of Cu doped ZnO nanoparticles crystallographic, optical FTIR, morphological and photocatalytic study. J Mater Sci Chem Eng 3:39–51

    CAS  Google Scholar 

  • Lakshmeesha TR, Sateesh MK, Daruka B, Prasad SC, Sharma D, Kavyashree D, Chandrasekhar M, Nagabhushana H (2014) Reactivity of crystalline ZnO superstructures against fungi and bacteria pathogens: synthesized using Nerium oleander leaf extract. Cryst Growth Des 14:4068–4079

    Article  CAS  Google Scholar 

  • Li L, Wang W, Liu H, Liu X, Song Q, Ren S (2009) First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. J Phys Chem C 113:8460–8464. https://doi.org/10.1021/jp811507r

    Article  CAS  Google Scholar 

  • Ma Z, Ren F, Ming X, Long Y, Volinsky AA (2019) Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials. 12:196. https://doi.org/10.3390/ma12010196

    Article  CAS  Google Scholar 

  • Mohan R, Krishnamoorthy K, Kim S (2012) Enhanced photocatalytic activity of Cu-doped ZnO nanorods. Solid State Commun 154:375–380. https://doi.org/10.1016/j.ssc.2011.12.008

    Article  CAS  Google Scholar 

  • NCCLS (2002) Methods for dilution antimicrobial susceptibility tests of bacteria that grow aerobically. Approved Standard M100-S12. Wayne. PA

  • Nirmala GA, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nano-particles a brief study. Colloids Surfaces A Physicochem Eng Asp 297:63–70

    Article  Google Scholar 

  • Parthiban C, Sundaramurthy N (2015) Biosynthesis , characterization of ZnO nanoparticles by using Pyrus pyrifolia leaf extract and Their photocatalytic activity. Int J Innovative Res Sci, Eng Tech 4:9710–9718. https://doi.org/10.15680/IJIRSET.2015.0410031

    Article  Google Scholar 

  • Peng Z, Wu D, Wang W, Tan F, Wang X, Chen J, Qiao X (2017) Effect of metal ion doping on ZnO nanopowders for bacterial inactivation under visible-light irradiation. Powder Technol 315:73–80. https://doi.org/10.1016/j.powtec.2017.03.052

    Article  CAS  Google Scholar 

  • Rafaie HA, Nor R, Amin YM (2015) Magnesium doped ZnO nanostructures synthesis using citrus aurantifolia extracts: structural and field electron emission properties. Mater Express 5:226–232. https://doi.org/10.1166/mex.2015.1227

    Article  CAS  Google Scholar 

  • Rouchdi M, Salmani E, Fares B, Hassanain N, Mzerd A (2017) Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results Phys 7:620–627

    Article  Google Scholar 

  • Sajjad M, Ullaha I, Khanb MI, Khanc J, Khana MY, Qureshid MT (2018) Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys 9:1301–1309

    Article  Google Scholar 

  • Samadi M, Zirak M, Naseri A, Khorashadizade EM (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19

    Article  CAS  Google Scholar 

  • Senthilkumar SR, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 6:461–465

    Google Scholar 

  • Shahid S, Khan SA, Ahmad U, Fatima S, Knawal S (2018) Size-dependent bacterial growth inhibition and antibacterial activity of Ag-doped ZnO nanoparticles under different atmospheric conditions. Indian J Pharm Sci 80:173–180

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  Google Scholar 

  • Singh S, Srivastava VC, Lo SL, Mandal TK, Naresh G (2017) Morphology-controlled green approach for synthesizing the hierarchical self-assembled 3D porous ZnO superstructure with excellent catalytic activity. Microporous Mesoporous Mater 239:296–309

    Article  CAS  Google Scholar 

  • Sirelkhatim A, MahmudS SA, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  • Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, Sun Z (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199:389–397. https://doi.org/10.1016/j.toxlet.2010.10.003

    Article  CAS  Google Scholar 

  • Teichner SJ, Formenti M (1985) Photoelectrochemistry, Photocatalysis and Photoreactor, edited by Schiavello, M. Reidel, Dordrecht

    Google Scholar 

  • Thaweesaenga N, Supankit S, Techidheeraa W, Pecharapa W (2013) Structure properties of as-synthesized Cu-doped ZnO nanopowder synthesized by co-precipitation method. Energy Procedia 34:682–688

    Article  Google Scholar 

  • Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200. https://doi.org/10.1016/j.jhazmat.2007.12.033

    Article  CAS  Google Scholar 

  • Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Phys 307(5):17

    Article  Google Scholar 

  • Vidya C, Hirematha S, Chandraprabhab MN, Antonyraja LMA, Gopala IV, Jaina A, Bansala K (2013) Green synthesis of ZnO nanoparticles by Calotropis Gigantea. Int J Curr Engg Technol 118–120

  • Wang R, Xin JH, Yang Y, Liu H, Xu L, Hu J (2004) The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Appl Surf Sci 227:312–317

    Article  CAS  Google Scholar 

  • Wang J, Yang J, Li X, Feng B, Wei B, Wang D, Zhai H, Song H (2015) Effect of surfactant on the morphology of ZnO nanopowders and their application for photodegradation of rhodamine B. Powder Technol 286:269–275. https://doi.org/10.1016/j.powtec.2015.08.030

    Article  CAS  Google Scholar 

  • World.Health.Organization (2016) The burden of health care-associated infection worldwide. Retrieved June 11th, 2018 from http://www.who.int/gpsc/country_work/burden_hcai/en/

  • Yadav HK, Sreenivas K, Katiyar RS, Gupta V (2007) Defect induced activation of Raman silent modes in RF co-sputtered Mn doped ZnO thin films. J PhysD Appl Phys 40:6005–6009

    Article  CAS  Google Scholar 

  • Yedurkar S, Maurya C, Mahanwar P (2016) Biosynthesis of zinc oxide nanoparticles using Ixora Coccinea leaf extract—a green approach. Open J Synth Theory Appl 5:1–14. https://doi.org/10.4236/ojsta.2016.51001

    Article  CAS  Google Scholar 

  • Yousef JM, Danial EN (2012) In vitro anti-bacterial activity and minimum inhibitory concentration of ZnO NPs against pathogenic strains. J Health Sci 2:38–42

    Google Scholar 

  • Zhong JB, Li JZ, He XY, Zeng J, Lu Y, Hu W, Lin K (2012) Improved photocatalytic performance of Pd-doped ZnO. Curr Appl Phys 12:998–1001

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Nano Research Group, UNN, and National Orthepedic Hospital Enugu, for giving us access to their Laboratory and to iThemba LABS, South Africa for XRD analysis.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Okeke IS, Agwu KK, and Ubachukwu AA: conceptualization. Okeke IS and Ezema FI: original draft, review and editing, methodology, investigation, data curation, and formal analysis. Agwu KK, Ubachukwu AA, and Ezema FI: supervision. Ezema FI and Maazu M: characterization and interpretation of data (XRD, EDS, and SEM). Ezema FI: validation. Okeke IS: writing the manuscript. Agwu KK, Ubachukwu AA, and Ezema FI: reviewing and editing the manuscript.

Corresponding author

Correspondence to FI Ezema.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Nanotechnology Convergence in Africa

Guest Editors: Mamadou Diallo, Abdessattar Abdelkefi, and Bhekie Mamba

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okeke, I., Agwu, K., Ubachukwu, A. et al. Impact of Cu doping on ZnO nanoparticles phyto-chemically synthesized for improved antibacterial and photocatalytic activities. J Nanopart Res 22, 272 (2020). https://doi.org/10.1007/s11051-020-04996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04996-3

Keywords

Navigation