Skip to main content
Log in

Phyto-mediated synthesis of pure phase α-Bi2O3 nanostructures using Rubus ellipticus plant extract: photocatalytic activity and antimicrobial efficacy

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Bismuth-based nanoparticles are promising and widely employed in environmental cleanup. Eco-friendly Bi-based nanoparticle synthesis is being explored for nanoscale fabrication. In this study, we report on the green fabrication of alpha bismuth oxide nanoparticles (α-Bi2O3 NPs) using an extract from the Himalayan plant Rubus ellipticus. α-Bi2O3 nanoparticles were fabricated using methanol extract of the fruits (REF-NPs) and leaves (REL-NPs) of Rubus ellipticus. The optimal synthesis of α-Bi2O3 NPs was evaluated through X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM), high-resolution transmission electron microscope (HR-TEM), UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS) techniques for crystal structure, shape, and optical characteristics. The visible light photocatalytic degradation of toxic dye-Congo red using REF-NPs and REL-NPs was performed. The photocatalytic activity of the synthesized NPs was estimated to be in order of REL-NPs > REF-NPs, with photo-degradation efficiencies of 89.2% and 84.2%, respectively, for Congo red. REL-NPs exhibited the highest rate, which was found to be 1.4 times higher than the REF-NPs sample. Photodegradation experiments revealed that the fabricated α-Bi2O3 exhibits enhanced degradation performance for toxic Congo red dye. The antimicrobial efficacy of REL-NPs and REF-NPs against Gram-positive (S. aureus and B. subtilis) and Gram-negative (E. coli, K. pneumoniae, and P. aeruginosa) bacteria, was determined. This work presents a simple green method for producing innovative α-Bi2O3 as a remarkable nanomaterial for aquatic bodies to break down dangerous pollutants by visible light photodegradation and as an antibacterial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The manuscript includes all data obtained during conducting the research. Data will be made available on request.

References

  1. Majedul Islam M (2022) Threats to humanity from climate change, in: Climate Change. In: The Social and Scientific Construct. Springer, pp 21–36. https://doi.org/10.1007/978-3-030-86290-9_2

    Chapter  Google Scholar 

  2. Abbass K, Qasim MZ, Song H, Murshed M, Mahmood H, Younis I (2022) A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29:42539–42559. https://doi.org/10.1007/s11356-022-19718-6

    Article  Google Scholar 

  3. Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al-Ouqaili MT, Chinedu Ikem J, Victor Chigozie U, Saki M (2022) Antibiotic resistance: the challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal 36:e24655. https://doi.org/10.1002/jcla.24655

    Article  Google Scholar 

  4. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E (2019) Global burden of bacterial antimicrobial resistance in : a systematic analysis. The Lancet 399(2022):629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

    Article  Google Scholar 

  5. Dadgostar P (2019) Antimicrobial resistance: implications and costs. Infect Drug Resist:3903–3910. https://doi.org/10.2147/IDR.S234610

  6. Kumar A, Gora MK, Lal G, Choudhary BL, Meena PL, Dhaka RS, Singhal RK, Kumar S, Dolia SN (2023) Impact of Gd3+ doping on structural, electronic, magnetic, and photocatalytic properties of MnFe2O4 nanoferrites and application in dye-polluted wastewater remediation. Environ Sci Pollut Res 30:18820–18842. https://doi.org/10.1007/s11356-022-23420-y

    Article  Google Scholar 

  7. Meena PL, Poswal K, Surela AK, Saini JK (2023) Synthesis of graphitic carbon nitride/zinc oxide (g-C3N4/ZnO) hybrid nanostructures and investigation of the effect of ZnO on the photodegradation activity of g-C3N4 against the brilliant cresyl blue (BCB) dye under visible light irradiation. Advanc Composit Hybrid Mater 6:16. https://doi.org/10.1007/s42114-022-00577-1

    Article  Google Scholar 

  8. Meena PL, Poswal K, Surela AK (2022) Facile synthesis of ZnO nanoparticles for the effective photodegradation of malachite green dye in aqueous solution. Water Environ J 36:513–524. https://doi.org/10.1111/wej.12783

    Article  Google Scholar 

  9. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YA-G, Elsamahy T, Jiao H, Fu Y, Sun J (2022) A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety 231:113160. https://doi.org/10.1016/j.ecoenv.2021.113160

    Article  Google Scholar 

  10. Balarabe BY, Bowmik S, Ghosh A, Maity P (2022) Photocatalytic dye degradation by magnetic XFe2O3 (X: Co, Zn, Cr, Sr, Ni, Cu, Ba, Bi, and Mn) nanocomposites under visible light: a cost efficiency comparison. J Magnet Magnet Mater 562:169823. https://doi.org/10.1016/j.jmmm.2022.169823

    Article  Google Scholar 

  11. Balarabe BY, Maity P (2022) Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids Surfaces A: Physicochem Eng Aspects 655:130247. https://doi.org/10.1016/j.colsurfa.2022.130247

    Article  Google Scholar 

  12. Yaou Balarabe B, Illiassou Oumarou MN, Koroney AS, Adjama I, Ibrahim Baraze AR (2023) Photo-oxidation of organic dye by Fe 2 O 3 nanoparticles: catalyst, electron acceptor, and polyurethane membrane (PU-Fe 2 O 3) effects. J Nanotech 2023. https://doi.org/10.1155/2023/1292762

  13. Meena PL, Poswal K, Surela AK, Saini JK (2021) Facile synthesis of ZnO/CuO/Ag2O ternary metal oxide nanocomposite for effective photodegradation of organic water pollutants. Water Sci Technol 84:2615–2634. https://doi.org/10.2166/wst.2021.431

    Article  Google Scholar 

  14. Harja M, Buema G, Bucur D (2022) Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci Rep 12:6087. https://doi.org/10.1038/s41598-022-10093-3

    Article  Google Scholar 

  15. Karaman C, Karaman O, Show P-L, Karimi-Maleh H, Zare N (2022) Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere 290:133346. https://doi.org/10.1016/j.chemosphere.2021.133346

    Article  Google Scholar 

  16. Kaushik J, Kumar V, Tripathi KM, Sonkar SK (2022) Sunlight-promoted photodegradation of Congo red by cadmium-sulfide decorated graphene aerogel. Chemosphere 287:132225. https://doi.org/10.1016/j.chemosphere.2021.132225

    Article  Google Scholar 

  17. Hitkari G, Chowdhary P, Kumar V, Singh S, Motghare A (2022) Potential of copper-zinc oxide nanocomposite for photocatalytic degradation of congo red dye. Clean Chem Eng 1:100003. https://doi.org/10.1016/j.clce.2022.100003

    Article  Google Scholar 

  18. Sun J, Chen X, Mo S, Zhang Z, Guo D, Li Y, Liu L (2022) Recent advances of bismuth halide based nanomaterials for photocatalytic antibacterial and photodynamic therapy. Advan Mater Inter 9:2200704. https://doi.org/10.1002/admi.202200704

    Article  Google Scholar 

  19. Prakash M, Kavitha HP, Abinaya S, Vennila JP, Lohita D (2022) Green synthesis of bismuth based nanoparticles and its applications-a review. Sustain Chem Phar 25:100547. https://doi.org/10.1016/j.scp.2021.100547

    Article  Google Scholar 

  20. Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicro Agent 49:137–152. https://doi.org/10.1016/j.ijantimicag.2016.11.011

    Article  Google Scholar 

  21. Modena MM, Rühle B, Burg TP, Wuttke S (2019) Nanoparticle characterization: what to measure? Advanc Mater 31:1901556. https://doi.org/10.1002/adma.201901556

    Article  Google Scholar 

  22. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip rev: Nanomed Nanobiotech 2:544–568. https://doi.org/10.1002/wnan.103

    Article  Google Scholar 

  23. Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi M (2022) Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater Techn 37:555–568. https://doi.org/10.1080/10667857.2020.1863573

    Article  Google Scholar 

  24. Joudeh N, Linke D (2022) Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotech 20:262. https://doi.org/10.1186/s12951-022-01477-8

    Article  Google Scholar 

  25. Meena PL, Poswal K, Surela AK, Meena KS, Mordhiya B (2023) Ag2O-adorned ZnO nanostructures: cooperative and sustainable nanomaterial system for effective reduction and mineralization of hazardous water pollutants. Environ Sci Pollut Res 30:68770–68791. https://doi.org/10.1007/s11356-023-27215-7

    Article  Google Scholar 

  26. Sabouri Z, Sabouri S, Moghaddas SSTH, Mostafapour A, Gheibihayat SM, Darroudi M (2022) Plant-based synthesis of Ag-doped ZnO/MgO nanocomposites using Caccinia macranthera extract and evaluation of their photocatalytic activity, cytotoxicity, and potential application as a novel sensor for detection of Pb2+ ions. Biomass Convers Biorefin:1–13. https://doi.org/10.1007/s13399-022-02907-1

  27. Meng X, Zhang Z (2016) Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. J Mole Cataly A: Chem 423:533–549. https://doi.org/10.1016/j.molcata.2016.07.030

    Article  Google Scholar 

  28. Jalalah M, Faisal M, Bouzid H, Park J-G, Al-Sayari S, Ismail AA (2015) Comparative study on photocatalytic performances of crystalline α-and β-Bi2O3 nanoparticles under visible light. J Indust Eng Chem 30:183–189. https://doi.org/10.1016/j.jiec.2015.05.020

    Article  Google Scholar 

  29. Huang X, Zhang W, Tan Y, Wu J, Gao Y, Tang B (2016) Facile synthesis of rod-like Bi2O3 nanoparticles as an electrode material for pseudocapacitors. Ceram Int 42:2099–2105. https://doi.org/10.1016/j.ceramint.2015.09.157

    Article  Google Scholar 

  30. Fang W, Zhang N, Fan L, Sun K (2016) Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. J Pow Sour 333:30–36. https://doi.org/10.1016/j.jpowsour.2016.09.155

    Article  Google Scholar 

  31. Nayef UM, Kamel RI (2020) Bi2O3 nanoparticles ablated on porous silicon for sensing NO2 gas. Optik 208:164146. https://doi.org/10.1016/j.ijleo.2019.164146

    Article  Google Scholar 

  32. Ahamed M, Akhtar MJ, Khan MM, Alrokayan SA, Alhadlaq HA (2019) Oxidative stress mediated cytotoxicity and apoptosis response of bismuth oxide (Bi2O3) nanoparticles in human breast cancer (MCF-7) cells. Chemosphere 216:823–831. https://doi.org/10.1016/j.chemosphere.2018.10.214

    Article  Google Scholar 

  33. Miao CC, Yuan GQ (2018) Morphology-controlled Bi2O3 nanoparticles as catalysts for selective electrochemical reduction of CO2 to formate. Chem Electro Chem 5:3741–3747. https://doi.org/10.1002/celc.201801036

    Article  Google Scholar 

  34. Oudghiri-Hassani H, Rakass S, Al Wadaani FT, Al-Ghamdi KJ, Omer A, Messali M, Abboudi M (2015) Synthesis, characterization and photocatalytic activity of α-Bi2O3 nanoparticles, Journal of Taibah University for. Science 9:508–512. https://doi.org/10.1016/j.jtusci.2015.01.009

    Article  Google Scholar 

  35. Kamel RI, Ahmed DS, Nayef UM (2019) Synthesis of Bi2O3 nanoparticles by laser ablation on porous silicon for photoconversion application. Optik 193:163013. https://doi.org/10.1016/j.ijleo.2019.163013

    Article  Google Scholar 

  36. Huang Q, Zhang S, Cai C, Zhou B (2011) β-and α-Bi2O3 nanoparticles synthesized via microwave-assisted method and their photocatalytic activity towards the degradation of rhodamine B. Mater Lett 65:988–990. https://doi.org/10.1016/j.matlet.2010.12.055

    Article  Google Scholar 

  37. Malligavathy M, Pathinettam Padiyan D (2021) Role of pH in the hydrothermal synthesis of phase pure alpha Bi2O3 nanoparticles and its structural characterization. Advan Mater Proceed 2:51–55. https://doi.org/10.5185/amp.2017/112

    Article  Google Scholar 

  38. Varshney A, Khan JA, Ahmad I, Uddin I (2021) Room temperature chemical synthesis of Bi2O3 nanoparticles. Micro & Nano Lett 16:509–514. https://doi.org/10.1049/mna2.12077

    Article  Google Scholar 

  39. Hernández-Díaz JA, Garza-García JJ, Zamudio-Ojeda A, León-Morales JM, López-Velázquez JC, García-Morales S (2021) Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. J Sci Food Agri 101:1270–1287. https://doi.org/10.1002/jsfa.10767

    Article  Google Scholar 

  40. Ali J, Ali N, Wang L, Waseem H, Pan G (2019) Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J Microbiol Methods 159:18–25. https://doi.org/10.1016/j.mimet.2019.02.010

    Article  Google Scholar 

  41. Sabouri Z, Oskuee RK, Sabouri S, Moghaddas SSTH, Samarghandian S, Abdulabbas HS, Darroudi M (2023) Phytoextract-mediated synthesis of Ag-doped ZnO–MgO–CaO nanocomposite using Ocimum Basilicum L seeds extract as a highly efficient photocatalyst and evaluation of their biological effects. Ceram Int 49:20989–20997. https://doi.org/10.1016/j.ceramint.2023.03.234

    Article  Google Scholar 

  42. Sabouri Z, Sabouri S, Tabrizi SS, Moghaddas H, Mostafapour A, Amiri MS, Darroudi M (2022) Facile green synthesis of Ag-doped ZnO/CaO nanocomposites with Caccinia macranthera seed extract and assessment of their cytotoxicity, antibacterial, and photocatalytic activity. Bioprocess Biosyst Eng 45:1799–1809. https://doi.org/10.1007/s00449-022-02786-w

    Article  Google Scholar 

  43. Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artifi cells, nanomed, biotech 47:844–851. https://doi.org/10.1080/21691401.2019.1577878

    Article  Google Scholar 

  44. Trivedi A, Verma S, Arya R, Mehta P, Tyagi R (2014) Variability in vegetative characters and yield attributes of Raspberry (Rubus spp.) in Uttarakhand Himalayas. Int J Fruit Sci 14:107–116. https://doi.org/10.1080/15538362.2013.817774

    Article  Google Scholar 

  45. Khaniya L, Bhattarai R, Jan HA, Hussain W, Abbasi AM, Bussmann RW, Paniagua-Zambrana NY (2021) Rubus ellipticus Sm. In: Rubus foliolosus Weihe & Nees Rubus fruticosus L. Rubus irritans Focke Rosaceae, in: Ethnobotany of the Himalayas. Springer, pp 1717–1733. https://doi.org/10.1007/978-3-030-57408-6_208

    Chapter  Google Scholar 

  46. Rojas-Vera J, Patel AV, Dacke CG (2002) Relaxant activity of raspberry (Rubus idaeus) leaf extract in guinea-pig ileum in vitro. Phytother Res: An Int J Devoted Pharma Toxicol Evaluation Nat Prod Deriv 16:665–668. https://doi.org/10.1002/ptr.1040

    Article  Google Scholar 

  47. Tripathi AN, Kumar P, Sati SC (2020) Uses of invasive alien plants in Kumaun Himalayan folk medicinal system. Int J Herb Med 8:27–31

    Google Scholar 

  48. Rokaya MB, Münzbergová Z, Timsina B (2010) Ethnobotanical study of medicinal plants from the Humla district of western Nepal. J Ethnopharma 130:485–504. https://doi.org/10.1016/j.jep.2010.05.036

    Article  Google Scholar 

  49. Badhani A, Rawat S, Bhatt ID, Rawal RS (2015) Variation in chemical constituents and antioxidant activity in Yellow Himalayan (Rubus ellipticus Smith) and Hill Raspberry (Rubus niveus Thunb.). J Food Biochem 39:663–672. https://doi.org/10.1111/jfbc.12172

    Article  Google Scholar 

  50. Kewlani P, Tiwari D, Rawat S, Bhatt ID (2022) Pharmacological and phytochemical potential of Rubus ellipticus: a wild edible with multiple health benefits. J Pharma Pharma. https://doi.org/10.1093/jpp/rgac053

  51. Meena PL, Surela AK, Saini JK, Chhachhia LK (2022) Millettia pinnata plant pod extract-mediated synthesis of Bi2O3 for degradation of water pollutants. Environ Sci Pollut Res 29:79253–79271. https://doi.org/10.1007/s11356-022-21435-z

    Article  Google Scholar 

  52. Meena PL, Surela AK, Poswal K, Saini JK, Chhachhia LK (2022) Biogenic synthesis of Bi2O3 nanoparticles using Cassia fistula plant pod extract for the effective degradation of organic dyes in aqueous medium. Biomass Convers Biorefin:1–17. https://doi.org/10.1007/s13399-022-02605-y

  53. Motakef-Kazemi N, Yaqoubi M (2020) Green synthesis and characterization of bismuth oxide nanoparticle using mentha pulegium extract. Iranian J Pharma Res: IJPR 19:70. https://doi.org/10.22037/ijpr.2019.15578.13190

    Article  Google Scholar 

  54. Nurmalasari N, Yulizar Y, Apriandanu D (2020) Bi2O3 nanoparticles: synthesis, characterizations, and photocatalytic activity. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p 012036. https://doi.org/10.1088/1757-899X/763/1/012036

    Chapter  Google Scholar 

  55. Rao RP, Mishra S, Tripathi R, Jain SK (2021) Bismuth oxide nanorods: phytochemical mediated one-pot synthesis and growth mechanism. Inorganic Nano-Metal Chem:1–8. https://doi.org/10.1080/24701556.2021.1980037

  56. Dhiman P, Rana G, Kumar A, Dawi EA, Sharma G (2023) Rare earth doped ZnO nanoparticles as spintronics and photo catalyst for degradation of pollutants. Molecules 28:2838. https://doi.org/10.3390/molecules28062838

    Article  Google Scholar 

  57. Mishra K, Ojha H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem 130:1036–1043. https://doi.org/10.1016/j.foodchem.2011.07.127

    Article  Google Scholar 

  58. Dhatwalia J, Kumari A, Chauhan A, Mansi K, Thakur S, Saini RV, Guleria I, Lal S, Kumar A, Batoo KM (2022) Rubus ellipticus Sm. fruit extract mediated zinc oxide nanoparticles: a green approach for dye degradation and biomedical applications. Materials 15:3470. https://doi.org/10.3390/ma15103470

    Article  Google Scholar 

  59. Malmros G (1970) The crystal structure of a-Bi2O3. Acta Chem. Scand 24:384

    Article  Google Scholar 

  60. Bokuniaeva A, Vorokh A (2019) Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. In: in: journal of physics: Conference series. IOP Publishing, p 012057. https://doi.org/10.1088/1742-6596/1410/1/012057

    Chapter  Google Scholar 

  61. Khairnar SD, Shrivastava VS (2019) Photocatalytic degradation of chlorpyrifos and methylene blue using α-Bi 2 O 3 nanoparticles fabricated by sol–gel method. SN Applied Sciences 1:1–10. https://doi.org/10.1007/s42452-019-0761-4

    Article  Google Scholar 

  62. Viruthagiri G, Kannan P, Indhumathi V (2017) Photocatalytic activity of α-phase bismuth oxide nanoparticles under visible light. Int J Advanc Sci Res 2:1–7

    Google Scholar 

  63. Raza W, Haque M, Muneer M, Harada T, Matsumura M (2015) Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. J Alloys Comp 648:641–650. https://doi.org/10.1016/j.jallcom.2015.06.245

    Article  Google Scholar 

  64. La J, Huang Y, Luo G, Lai J, Liu C, Chu G (2013) Synthesis of bismuth oxide nanoparticles by solution combustion method. Particulate Sci Technol 31:287–290. https://doi.org/10.1080/02726351.2012.727525

    Article  Google Scholar 

  65. Huízar-Félix A, Hernández T, De la Parra S, Ibarra J, Kharisov B (2012) Sol–gel based Pechini method synthesis and characterization of Sm1− xCaxFeO3 perovskite 0.1≤ x≤ 0.5. Powder techn 229:290–293. https://doi.org/10.1016/j.powtec.2012.06.057

    Article  Google Scholar 

  66. Mei J, Liao T, Ayoko GA, Sun Z (2019) Two-dimensional bismuth oxide heterostructured nanosheets for lithium-and sodium-ion storages. ACS appl mater inter 11:28205–28212. https://doi.org/10.1021/acsami.9b09882

    Article  Google Scholar 

  67. Guan H, Zhang X, Xie Y (2014) Soft-chemical synthetic nonstoichiometric Bi2O2. 33 nanoflower: a new room-temperature ferromagnetic semiconductor. J Phys Chem C 118:27170–27174. https://doi.org/10.1021/jp509045d

    Article  Google Scholar 

  68. Köhler R, Ohms G, Militz H, Viöl W (2018) Atmospheric pressure plasma coating of bismuth oxide circular droplets. Coatings 8:312. https://doi.org/10.3390/coatings8090312

    Article  Google Scholar 

  69. Chauhan A, Verma R, Batoo KM, Kumari S, Kalia R, Kumar R, Hadi M, Raslan EH, Imran A (2021) Structural and optical properties of copper oxide nanoparticles: a study of variation in structure and antibiotic activity. J Mater Res 36:1496–1509. https://doi.org/10.1557/s43578-021-00193-7

    Article  Google Scholar 

  70. Jubu P, Yam F, Igba V, Beh K (2020) Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data–a case study of β-Ga2O3. Journal of Solid State Chemistry 290:121576. https://doi.org/10.1016/j.jssc.2020.121576

    Article  Google Scholar 

  71. Balarabe BY, Paria S, Keita DS, Baraze ARI, Kalugendo E, Tetteh GNT, Meringo MM, Oumarou MNI (2022) Enhanced UV-light active α-Bi2O3 nanoparticles for the removal of methyl orange and ciprofloxacin. Inorganic Chem Commun 146:110204. https://doi.org/10.1016/j.inoche.2022.110204

    Article  Google Scholar 

  72. Dutta V, Sharma S, Raizada P, Kumar R, Thakur VK, Nguyen V-H, Asiri AM, Khan AAP, Singh P (2020) Recent progress on bismuth-based Z-scheme semiconductor photocatalysts for energy and environmental applications. J Environ Chem Eng 8:104505. https://doi.org/10.1016/j.jece.2020.104505

    Article  Google Scholar 

  73. Dutta V, Sonu S, Raizada P, Thakur VK, Ahamad T, Thakur S, Kumar Verma P, Quang HHP, Nguyen V-H, Singh P (2022) Prism-like integrated Bi2WO6 with Ag-CuBi2O4 on carbon nanotubes (CNTs) as an efficient and robust S-scheme interfacial charge transfer photocatalyst for the removal of organic pollutants from wastewater. Environ Sci Pollut Res:1–16. https://doi.org/10.1007/s11356-022-20743-8

  74. Saklani S, Chandra S, Badoni P, Dogra S (2012) Antimicrobial activity, nutritional profile and phytochemical screening of wild edible fruit of Rubus ellipticus. Int J Med Aromat Plants 2:269–274

    Google Scholar 

  75. Shibu Prasanth S, Chandran P (2017) Phytochemical and antimicrobial analysis of leaf samples of different Rubus species. Intl J Chem Tech Res 10:359–368

    Google Scholar 

  76. Moharekar S, Raskar P, Wani A, Moharekar S (2014) Synthesis and comparative study of zinc oxide nanoparticles with and without capping of pectin and its application, World. J Pharm Pharm Sci 3:1255–1267

    Google Scholar 

  77. Ramesh P, Saravanan K, Manogar P, Johnson J, Vinoth E, Mayakannan M (2021) Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sensing and Bio-Sensing Research 31:100399. https://doi.org/10.1016/j.sbsr.2021.100399

    Article  Google Scholar 

  78. Shakibaie M, Amiri-Moghadam P, Ghazanfari M, Adeli-Sardou M, Jafari M, Forootanfar H (2018) Cytotoxic and antioxidant activity of the biogenic bismuth nanoparticles produced by Delftia sp. SFG, Materials Research Bulletin 104:155–163. https://doi.org/10.1016/j.materresbull.2018.04.001

    Article  Google Scholar 

  79. Das PE, Majdalawieh AF, Abu-Yousef IA, Narasimhan S, Poltronieri P (2020) Use of a hydroalcoholic extract of Moringa oleifera leaves for the green synthesis of bismuth nanoparticles and evaluation of their anti-microbial and antioxidant activities. Materials 13:876. https://doi.org/10.3390/ma13040876

    Article  Google Scholar 

  80. Qasim S, Zafar A, Saif MS, Ali Z, Nazar M, Waqas M, Haq AU, Tariq T, Hassan SG, Iqbal F (2020) Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. J Photochem Photobiol B: Biol 204:111784. https://doi.org/10.1016/j.jphotobiol.2020.111784

    Article  Google Scholar 

  81. Jassim AM, Farhan SA, Salman JA, Khalaf KJ, Al Marjani MF, Mohammed MT (2015) Study the antibacterial effect of bismuth oxide and tellurium nanoparticles. Int j chem biol sci 1:81–84

    Google Scholar 

  82. Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I, Arevalo-Niño K, Cabral-Romero C (2013) Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomed:1645–1652. https://doi.org/10.2147/IJN.S38708

  83. Indurkar AR, Sangoi VD, Patil PB, Nimbalkar MS (2018) Rapid synthesis of Bi2 O3 nano-needles via ‘green route’and evaluation of its anti-fungal activity. IET Nanobiotech 12:496–499. https://doi.org/10.1049/iet-nbt.2017.0070

    Article  Google Scholar 

  84. Król A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B (2017) Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Advances Coll Interf Sci 249:37–52. https://doi.org/10.1016/j.cis.2017.07.033

    Article  Google Scholar 

  85. Ali MA, Fahad S, Haider I, Ahmed N, Ahmad S, Hussain S, Arshad M (2019) Oxidative stress and antioxidant defense in plants exposed to metal/metalloid toxicity, Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism. Signaling Defense Mechan:353–370. https://doi.org/10.1002/9781119468677.ch15

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ankush Chauhan and Ritesh Verma designed the study and written the manuscript; Jyoti Dhatwalia, Manpreet Kaur, and Janani Vignesh collected plant samples, synthesized, and characterized the nano-materials; Vishal Dutta and Gopalakrishnan Chandrasekaran were involved in the interpretation of data; Amita Kumari, Suresh Ghotekar, and Shabnam Thakur reviewed the literature and conducted antimicrobial and photocatalytic studies.

Corresponding author

Correspondence to Ankush Chauhan.

Ethics declarations

Ethical approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Verma, R., Dhatwalia, J. et al. Phyto-mediated synthesis of pure phase α-Bi2O3 nanostructures using Rubus ellipticus plant extract: photocatalytic activity and antimicrobial efficacy. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04679-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04679-8

Keywords

Navigation