Skip to main content
Log in

Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Biogenic synthesis of iron oxide nanorods (FeO-NRs) from FeCl3 capped with Moringa oleifera (MO) has been developed in this work. The facile, cost effective, and eco-friendly FeO-NRs formulated were characterized using various techniques. The change in the visible color which leads to the formulation of FeO-NRs was confirmed by the UV–visible spectroscopy analysis. The crystallinity of FeO-NRs was observed in the X-ray diffraction spectroscopy pattern indexed to the spinel cubic lattice in the tetrahedral hematite structure. A rod-like morphology of FeO-NRs with the average particle size of 15.01 ± 6.03 nm was determined by the scanning and transmission electron microscopies. Fourier transform infrared spectroscopy analysis shows the various functional groups in the formulatedFeO-NRs. Vibrating sample magnetometer shows that the formulated FeO-NRs are superparamagnetic with good saturation magnetization. The formulated FeO-NRs inhibit the growth of six human pathogens with a higher activity at lower concentrations. It is noteworthy that the bacterial strains show strong and effective susceptibility to the formulated FeO-NRs at lower concentrations compared to the conventional antibacterial drugs. Hence, the formulated FeO-NRs proved to be a good, efficient, and promising antibacterial agent due to its cost-effectiveness, non-toxicity, and facile synthesis procedures in therapeutic biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abid J, Wark A, Brevet P, Girault H (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun 7:792–793

    Google Scholar 

  • Ahluwalia V, Elumalai S, Kumar V, Kumar S, Sangwan RS (2018) Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microb Pathog 114:402–408

    CAS  Google Scholar 

  • Aliosmanoglu A, Basaran I (2012) Nanotechnology in cancer treatment. J Nanomed Biother Discov 21:1–3

    Google Scholar 

  • Anamaria O, Hui W, Yaolin X, Qiong L, Hui M (2017) One-step facile synthesis of highly magnetic and surface functionalized iron oxide nanorods for biomarker-targeted applications. ACS Appl Mater Interfaces 9:20719–20727

    Google Scholar 

  • Andrej O, Renáta O, Zuzana OK, Andrea MT, Kupková M, Monika H et al (2014) Sintered metallic foams for biodegradable bone replacement materials. J Porous Mater 21:131–140

    Google Scholar 

  • Autian J (1975) Polymer science and technology. Polym Med Surg 8:181

    Google Scholar 

  • Bamishaiye E (2011) Proximate and photochemical composition of Moringa oleifera. Adv J Food Sci Technol 3(4):233–237

    CAS  Google Scholar 

  • Bogle K, Dhole S, Bhoraskar V (2006) Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology 17:3204

    CAS  Google Scholar 

  • Cheera P, Gutha Y, Ponneri V (2016) Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and methyl orange dye degradation studies. J Magn Magn Mater 424:376–381

    Google Scholar 

  • Chen J, Wang K, Xin J, Jin Y (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108:421–424

    CAS  Google Scholar 

  • Cheng P, Song L, Liu Y, Fang Y (2007) Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan. Radiat Phys Chem 76:1165–1168

    Google Scholar 

  • Choi H, Frangioni J (2010) Nanoparticles for biomedical imaging, fundamentals of clinical translation. Mol Imaging 9:291–310

    CAS  Google Scholar 

  • Cozzoli P, Comparelli R, Fanizza E, Curri M, Agostiano A, Laub D (2004) Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. J Am Chem Soc 126:3868–3879

    CAS  Google Scholar 

  • Cullity B (1978) Element of X-ray diffraction, 2nd edn. Addison-Wesley, London

    Google Scholar 

  • Dharamvir SA, Rekha K, Rachna Y, Indu Y (2014) Synthesis and characterization of sol–gel prepared silver nanoparticles. Int J Nanosci 13:1450004

    Google Scholar 

  • Durán N, Seabra A (2018) Biogenic synthesized Ag/Au nanoparticles: production, characterization, and applications. Curr Nanosci 14:82–94

    Google Scholar 

  • Elango G, Kumaran S, Kumar S, Muthuraja S, Roopan S (2015) Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim Acta Part A Mol Biomol Spectrosc 145:176–180

    CAS  Google Scholar 

  • Flores-González M, Talavera-Rojas M, Soriano-Vargas E, Rodríguez-González V (2018) Practical mediated-assembly synthesis of silver nanowires using commercial Camellia sinensis extracts and their antibacterial properties. New J Chem 42:2133–2139

    Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874

    CAS  Google Scholar 

  • George J, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta 185:358

    Google Scholar 

  • Hadeeja P, Viktoria B, Lalita L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc 1724:020048

    Google Scholar 

  • Huang L, Zhai M, Long D, Peng J, Xu L, Wu G et al (2008) UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J Nanopart Res 10:1193–1202

    CAS  Google Scholar 

  • Huang J, Wang L, Zhong X, Li Y, Yang L, Mao H (2014) Facile non-hydrothermal synthesis of oligosaccharide coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effects. J Mater Chem B 2:5344–5351

    CAS  Google Scholar 

  • Indira TK, Laksmi PK (2010) Magnetic nanoparticles—a review. Int J Pharm Sci Nanotechnol 3:1035–1042

    CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    CAS  Google Scholar 

  • Ivan Sondi BS (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Google Scholar 

  • Jagathesan G, Rajiv P (2018) Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatal Agric Biotechnol 13:90–94

    Google Scholar 

  • Jered BH, Tae-Jong Y, Hakho L, Ralph W (2010) Magnetic nanoparticle biosensors. Adv Rev 2:291–304

    Google Scholar 

  • Joanna D-L, Agnieszka Ł, Przemysław H, Oskar S, Karolina K, Anna K (2019) Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials 12:617

    Google Scholar 

  • Kabashin A, Meunier M (2003) Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J Appl Phys 94:7941–7943

    CAS  Google Scholar 

  • Kapusetti G, Misra N, Singh V, Kushwaha RK, Mati P (2012) Bone cement/layered double hydroxide nanocomposites as potential biomaterials for joint implant. J Biomed Mater Res Part A 100A:3363–3373

    CAS  Google Scholar 

  • Karpagavinayagam P, Vedh C (2019) Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vaccum 160:286–292

    CAS  Google Scholar 

  • Karthiga R, Kavitha B, Rajarajan M, Suganthi A (2015) Photocatalytic and antimicrobial activity of NiWO4 nanoparticles stabilized by the plant extract. Mater Sci Semicond Process 14:123–129

    Google Scholar 

  • Karthiga AR, Kavitha B, Rajarajan M (2018) Synthesis of MoO3 microrods via phytoconsituents of Azadirachta indica leaf to study the cationic dye degradation and antimicrobial properties. J Alloy Compd 52:300–307

    Google Scholar 

  • Karthiga R, Rajarajan M, Suganthi A (2019) Green synthesis of Ag-Mo/CuO nanoparticles using Azadirachta indica leaf extracts to study its solar photocatalytic and antimicrobial activities. Mater Sci Semicond Process 91:230–238

    Google Scholar 

  • Khalil M, Yu J, Liu N, Lee RL (2014) Hydrothermal synthesis, characterization, and growth mechanism of hematite nanoparticles. J Nanopart Res 16:2362

    Google Scholar 

  • Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17:4019

    CAS  Google Scholar 

  • Kombaiah K, Judith JV, John LK, Bououdina M, Jothi RR, Hamad AA (2018) Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic and antimicrobial properties. Mater Chem Phys 204:410–419

    CAS  Google Scholar 

  • Kruis F, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69:329–334

    Google Scholar 

  • Ladole C (2012) Preparation and characterization of spinel zinc ferrite ZnFe2O4. Int J Chem Sci 10:1230

    CAS  Google Scholar 

  • Leena M, Hassan G, Doaa R, Jesse Z (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14

    Google Scholar 

  • Li Y, Li CH, Talham DR (2015) One-step synthesis of gradient gadolinium ironhexacyanoferrate nanoparticles: a new particle design easily combining MRI contrast and photothermal therapy. Nanoscale 7:5209–5216

    CAS  Google Scholar 

  • Long D, Wu G, Chen S (2007) Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiat Phys Chem 76:1126–1131

    CAS  Google Scholar 

  • Luo X, Morrin A, Killard A, Smyth M (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

    CAS  Google Scholar 

  • Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S et al (2004) Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chem Phys Chem 24:68–75

    Google Scholar 

  • Madhukara MN, Bhojya HN, Nagarajub G, Vinuthc M, Raja HN (2019) Green synthesis of zinc ferrite nanoparticles in Limonia acidissima juice: characterization and their application as photocatalytic and antibacterial activities. Microchem J 146:1227–1235

    Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337

    CAS  Google Scholar 

  • Mahltig B, Gutmann E, Reibold M, Meyer D, Bottcher H (2009) Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol-Gel Sci Technol 51:204–214

    CAS  Google Scholar 

  • Malval J-P, Jin M, Balan L, Schneider R, Versace D-L, Chaumeil H et al (2010) Photoinduced size-controlled generation of silver nanoparticles coated with carboxylate-derivatized thioxanthones. J Phys Chem C 114:10396–10402

    CAS  Google Scholar 

  • Mamatha R, Khan S, Salunkhe P, Satpute S, Kendurkar S, Prabhune A (2017) Rapid synthesis of highly monodispersed silver nanoparticles from the leaves of Salvadora persica. Mater Lett 205:226–229

    CAS  Google Scholar 

  • Mandeep K, Akansha M, Amit M, Jagpreet S, Mohit R, Soumen B (2018) Biosynthesis of tin oxide nanoparticles using Psidium guajava leave extract for photocatalytic dye degradation under sunlight. Mater Lett 215:121–124

    Google Scholar 

  • Manjul G, Geeta JN (2018) Synthesis and catalytic and biological activities of silver and copper nanoparticles using Cassia occidentalis. Int J Biomater. https://doi.org/10.1155/2018/6735426

    Article  Google Scholar 

  • Manoja D, Soumya S (2018) Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity. Appl Nanosci 8:1059–1067

    Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Localized surface plasmon resonance efects by naturally occurring Chinese yam particles. J Chem Phys 116:6755–6759

    CAS  Google Scholar 

  • Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolke RH (1995) Manual of clinical microbiology, vol 6. ASM, Washington, DC

    Google Scholar 

  • Nadagouda M, Speth T, Varma R (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44:469–478

    CAS  Google Scholar 

  • Nadeem M, Ahmad M, Akhtar MS, Shaari A, Riaz S (2016) Magnetic properties of polyvinyl alcohol and doxorubicine loaded iron oxide nanoparticles for anticancer drug delivery applications. PLoS One 11:e0158084

    Google Scholar 

  • Naseri MG, Saion EB, Hashim M, Shaari AH, Ahangar HA (2011) Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun 151:1031

    CAS  Google Scholar 

  • Nathalie S, Fabienne D, Véronique P (2015) Iron oxide-loaded nanotheranostics: major obstacles to in vivo studies and clinical translation. J Control Release 198:35–54

    Google Scholar 

  • Offor C (2015) Photochemical and proximate analyses of Psidium guajava leaves. J Res Pharm Sci 2(6):05–07

    Google Scholar 

  • Ofra Z-P, Shlomo M, Abraham S (2015) Application of iron oxide nanoparticles in neuronal tissue engineering. Neural Regen Res 10:189–191

    Google Scholar 

  • Olayemi FF (2011) Proximate and Phytochemical composition of Moringa oleifera. Adv J Food Sci Technol 3(4):233–237

    Google Scholar 

  • Oliveira M, Ugarte D, Zanchet D, Zarbin A (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 292:429–435

    CAS  Google Scholar 

  • Park J, Kadasala NR, Abouelmagd SA, Castanares MA, Collins DS, Wei A, Yeo Y (2016) Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials 101:285–295

    CAS  Google Scholar 

  • Qin X-J, Yu Q, Yan H, Khan A, Feng M-Y, Li P-P et al (2017) Meroterpenoids with antitumor activities from guava (Psidium guajava). J Agric Food Chem 65:4993–4999

    CAS  Google Scholar 

  • Rossier M (2009) Tannin channel and steriods biosynthesis in search of a link with mitochondria. J Cell Calcium 40(2):155–164

    Google Scholar 

  • Samy RP, Ignacimuthu S (2000) Antibacterial activity of some folklore medicinal plants used by tribals in Western Ghats of India. J Ethnopharmacol 69:63–71

    CAS  Google Scholar 

  • Sayed FN, Polshettiwar V (2015) Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides. Sci Rep 5:9733

    CAS  Google Scholar 

  • Selvam S, Seerangaraj V, Devaraj B, Mythili S, Elayaperumal M, Smita SK, Arivalagan P (2018) Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J Photochem Photobiol B: Biol 188:126–134

    Google Scholar 

  • Seyed M, Karolin R, Natascha ID, Saskiavon S, Ruth K, Fabian K, Twan L (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2019.01.005

    Article  Google Scholar 

  • Shchukin D, Radtchenko I, Sukhorukov G (2003) Photoinduced reduction of silver inside microscale polyelectrolyte capsules. Chem Phys Chem 4:1101–1103

    CAS  Google Scholar 

  • Socol Y, Abramson O, Gedanken A, Meshorer Y, Berenstein L, Zaban A (2002) Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir 18:4736–4740

    CAS  Google Scholar 

  • Song JY, Jang H-K, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Biochem 44:1133–1138

    CAS  Google Scholar 

  • Sone BT, Manikandan E, Gurib-Fakim AM (2016) Single-phase α-Cr2O3 nanoparticles’ green synthesis using Callistemon viminalis’ red flower extract. Green Chem Lett Rev 9:85–90

    CAS  Google Scholar 

  • Soukupova J, Kvitek L, Panacek A, Nevecna T, Zboril R (2008) Comprehensive study on surfactant role on silver nanoparticles (NPs) prepared via modified Tollens process. Mater Chem Phys 111:77–81

    CAS  Google Scholar 

  • Susanto H, Feng YU (2009) Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J Food Eng 91:333–340

    CAS  Google Scholar 

  • Sylvestre J, Kabashin A, Sacher E, Meunier M, Luong J (2004) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem Soc 126:7176–7177

    CAS  Google Scholar 

  • Thanigai KA, Manikanda E, Murmue P, Kennedy J, Henini M (2017) Enhanced magnetic properties of polymer-magnetic nanostructuressynthesized by ultrasonication. J Alloy Compd 720:395–400

    Google Scholar 

  • Umera A, Muhammad BT, ArslanLiaqat T, Muhammad A (2018) Green synthesis and characterization of novel iron particles by using different extracts. J Alloy Compd 732:935–944

    Google Scholar 

  • Valodkar M, Modi S, Pal A, Takore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46:384–389

    CAS  Google Scholar 

  • Venugopala K, Rathera HA, Rajagopala K, Shanthib MP, Sheriffc K, Illiyas M, Bhaskard MM (2017) Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photochem Photobiol B: Biol 167:282–289

    Google Scholar 

  • Viviana V, Flavia S, Claudia B, Rosaria R, Daniele V, Michele M, Francesca B, Gianluigi G, Xingcai Z, Yuri ML, Stefano L (2011) Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Adv Drug Deliv Rev 63:847–864

    Google Scholar 

  • Yin Y, Li Z-Y, Zhong Z, Gates B, Venkateswaran S (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527

    CAS  Google Scholar 

  • Zhang Y, Chen F, Zhuang J, Tang Y, Wang D, Wang Y et al (2002) Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes. Chem Commun 24:2814–2815

    Google Scholar 

Download references

Acknowledgements

Samson O. Aisida (NCP-CAAD/TWAS_Fellow8408) acknowledges the NCP-TWAS Postdoc Fellowship award. FIE (90407830) acknowledges UNISA for VRSP Fellowship award; he also acknowledges the grant by TETFUND under contract number TETF/DESS/UNN/NSUKKA/STI/VOL.I/B4.33. Also, we thank Engr. Emeka Okwuosa for the sponsorship of 2014, 2016, and 2018 nano-conferences/workshops.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samson O. Aisida or Fabian I. Ezema.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aisida, S.O., Madubuonu, N., Alnasir, M.H. et al. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl Nanosci 10, 305–315 (2020). https://doi.org/10.1007/s13204-019-01099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01099-x

Keywords

Navigation