Skip to main content
Log in

Effects of Near-amorphous multiphase intermetallic compound particles on the microstructure and mechanical properties of SnBi solders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, near-amorphous multiphase intermetallic compound (IMC) particles were prepared with mass percentages of 0, 0.25, 0.5, and 1% to form composite SnBi solder alloys. Furthermore, the impact of the IMC particles amount on the melting properties, microstructure, and mechanical properties of the solder alloy was investigated. The thermal analysis data showed that the IMC particles decreased the melting range, melting temperature, and undercooling of composite solders. The microstructure of the solder alloy was significantly better than that of SnBi alloys after the addition of IMC. In the ball shear test, the microscale solder joints of the SnBi alloy comprising 0.5-wt% IMC particles exhibited the highest shear strength. Meanwhile, the ductility was improved most significantly in the SnBi alloy with 1-wt% IMC particles, the morphological characteristics of shear ports also support this phenomenon. The fracture morphology, location, and fracture mode of solder joints also changed with the increase of the IMC amount. Nanoindentation test results revealed that the enhancement of the creep resistance in SnBi-IMC microscale solder joint samples was due to the shift in creep mechanism by the presence of IMC particles. Additionally, the impact of the IMC particles amount on the hardness and elasticity modulus of SnBi-IMC solder alloys was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.K. Kang, A.K. Sarkhel, J. Electron. Mater. 23, 701 (1994)

    Article  CAS  Google Scholar 

  2. X. Hu, T. Xu, L.M. Keer, Y. Li, X. Jiang, J. Alloys Compd. 690, 720 (2017)

    Article  CAS  Google Scholar 

  3. W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, A. Garcia, J. Alloys Compd. 572, 97 (2013)

    Article  Google Scholar 

  4. A.F. Abd El-Rehim, H.Y. Zahran, J. Alloys Compd. 695, 3666 (2017)

    Article  CAS  Google Scholar 

  5. A. Nabihah, M.S. Nurulakmal, Mater. Today Proc. 17, 803 (2019)

    Article  CAS  Google Scholar 

  6. H. Wang, X. Hu, X. Jiang, Mater. Charact. 163, 110287 (2020)

    Article  CAS  Google Scholar 

  7. W. Dong, Y. Shi, Z. Xia, Y. Lei, F. Guo, J. Electron. Mater. 37, 982 (2008)

    Article  CAS  Google Scholar 

  8. F. Wang, Y. Huang, C. Du, Mater. Sci. Eng. A 668, 224 (2016)

    Article  CAS  Google Scholar 

  9. Q. Xu, X. Ding, C. Chen, J. Zhou, F. Xue, Q. Chen, Mater. Lett. 305, 130745 (2021)

    Article  CAS  Google Scholar 

  10. W. Zhu, W. Zhang, W. Zhou, P. Wu, J. Alloys Compd. 789, 805 (2019)

    Article  CAS  Google Scholar 

  11. W. Zhu, Y. Ma, X. Li, W. Zhou, P. Wu, J. Mater. Sci.: Mater. Electron. 29, 7575 (2018)

    CAS  Google Scholar 

  12. X. Li, Y. Ma, W. Zhou, P. Wu, Mater. Sci. Eng. A 684, 328 (2017)

    Article  CAS  Google Scholar 

  13. T. Feng, H. Hahn, H. Gleiter, Wuli Xuebao/Acta Physica Sinica 66, (2017)

  14. J. Gui, X. Li, J. Wang, W. Li, H. Qin, J. Mater. Sci.: Mater. Electron. 32, 28454 (2021)

    CAS  Google Scholar 

  15. H. Zhang, X. Li, W. Zhou, Mater. Chem. Phys. 290, (2022)

  16. L. Zhang, K.N. Tu, Mater. Sci. Eng. R: Rep. 82, 1 (2014)

    Article  Google Scholar 

  17. Y. Li, Y.C. Chan, J. Alloys Compd. 645, 566 (2015)

    Article  CAS  Google Scholar 

  18. P. Liu, P. Yao, J. Liu, J. Electron. Mater. 37, 874 (2008)

    Article  CAS  Google Scholar 

  19. R. Sun, Y. Sui, J. Qi, F. Wei, Y. He, X. Chen, Q. Meng, Z. Sun, J. Electron. Mater. 46, 4197 (2017)

    Article  CAS  Google Scholar 

  20. P. Yao, P. Liu, J. Liu, J. Alloys Compd. 462, 73 (2008)

    Article  CAS  Google Scholar 

  21. H. Zhang, X. Li, P. Yao, L. Wen, Y. Zhu, X. He, G. Yang, Mater. Charact. 186, 111791 (2022)

    Article  CAS  Google Scholar 

  22. A.S.M.A. Haseeb, M.M. Arafat, M.R. Johan, Mater. Charact. 64, 27 (2012)

    Article  CAS  Google Scholar 

  23. A.K. Gain, L. Zhang, J. Mater. Sci.: Mater. Electron. 28, 15718 (2017)

    CAS  Google Scholar 

  24. Y. Wan, S. Li, X. Hu, Y. Qiu, T. Xu, Y. Li, X. Jiang, Microelectron. Reliab. 86, 27 (2018)

    Article  CAS  Google Scholar 

  25. F. Wang, H. Chen, Y. Huang, L. Liu, Z. Zhang, J. Mater. Sci.: Mater. Electron. 30, 3222 (2019)

    Article  CAS  Google Scholar 

  26. Y. Tang, S.M. Luo, W.F. Huang, Y.C. Pan, G.Y. Li, J. Alloys Compd. 719, 365 (2017)

    Article  CAS  Google Scholar 

  27. M.L. Huang, F. Zhang, F. Yang, N. Zhao, J. Mater. Sci.: Mater. Electron. 26, 2278 (2015)

    CAS  Google Scholar 

  28. P.F. Yang, Y.S. Lai, S.R. Jian, J. Chen, R.S. Chen, Mater. Sci. Eng. A 485, 305 (2008)

    Article  Google Scholar 

  29. M.J. Mayo, R.W. Siegel, A. Narayanasamya, W.D. Nix, J. Mater. Res. 5, 1073 (1990)

    Article  CAS  Google Scholar 

  30. B.N. Lucas, W.C. Oliver, Metall. Mater. Trans. A 30, 601 (1999)

    Article  Google Scholar 

  31. L. Shen, Z.Y. Tan, Z. Chen, Mater. Sci. Eng. A 561, 232 (2013)

    Article  CAS  Google Scholar 

  32. R. Mahmudi, R. Roumina, B. Raeisinia, Mater. Sci. Eng. A 382, 15 (2004)

    Article  Google Scholar 

  33. L. Shen, P. Septiwerdani, Z. Chen, Mater. Sci. Eng. A 558, 253 (2012)

    Article  CAS  Google Scholar 

  34. D. Grivas, K.L. Murtyt, J.W. Morris, Acra Merolfurgicu. 27, 731 (1979)

    CAS  Google Scholar 

Download references

Funding

This study was sponsored by the National Natural Science Foundation of China under Grant No. 52065015; the Guangxi Natural Science Foundation under Grant No. 2021 GXNSFAA075010; Director Fund Project of Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology under Grant No. 20-065-40-002Z; Self-Topic Fund of Engineering Research Center of Electronic Information Materials and Devices under Grant No. EIMD-AB202007; Science and Technology Plan Project of Liudong New District under Grant No. Liudongkegong20210106; and Innovation Project of GUET Graduate Education under Grant Nos. 2021YCXS006 and 2021YXW06.

Author information

Authors and Affiliations

Authors

Contributions

JL participated in the conceptualization, investigation, methodology, formal analysis, data curation, writing of the original draft, and writing, reviewing, & editing of the manuscript. JW participated in the methodology, formal analysis, and data curation. ZL contributed to methodology and formal analysis. LM participated in the conceptualization, investigation, writing, reviewing, & editing of the manuscript. HQ participated in the conceptualization, investigation, methodology, formal analysis, and writing, reviewing, & editing of the manuscript.

Corresponding authors

Correspondence to Lei Ma or Hongbo Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human tissues or animals performed by any of the authors.

Consent to participate

This research is not related to human subjects.

Consent for publication

The author assigns non-exclusive publication rights to Springer and warrants that his contribution is unique and that he possesses all necessary authority to make this grant. The author assumes responsibility for the material’s release on behalf of all co-authors. This assignment of publication rights includes the non-exclusive right to reproduce and distribute the article in any format, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or other reproductions of a similar nature.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6424.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Wang, J., Li, Z. et al. Effects of Near-amorphous multiphase intermetallic compound particles on the microstructure and mechanical properties of SnBi solders. J Mater Sci: Mater Electron 34, 1248 (2023). https://doi.org/10.1007/s10854-023-10670-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10670-w

Navigation